research unit 1

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit


Type of publication:Article
Entered by:ichatz
TitleAdaptive Energy Management for Incremental Deployment of Heterogeneous Wireless Sensors
Bibtex cite IDRACTI-RU1-2008-4
Journal Theory of Computing Systems
Year published 2008
Month January
Volume 42
Number 1
Pages 42-72
ISSN 1432-4350
Note Special Issue on 17th ACM Symposium on Parallelism in Algorithms and Architectures
DOI 10.1007/s00224-007-9011-z
Keywords Wireless Sensor Networks
We introduce a new modelling assumption for wireless sensor networks, that of node redeployment (addition of sensor devices during protocol evolution) and we extend the modelling assumption of heterogeneity (having sensor devices of various types). These two features further increase the highly dynamic nature of such networks and adaptation becomes a powerful technique for protocol design. Under these modelling assumptions, we design, implement and evaluate a new power conservation scheme for efficient data propagation. Our scheme is adaptive: it locally monitors the network conditions (density, energy) and accordingly adjusts the sleep-awake schedules of the nodes towards improved operation choices. The scheme is simple, distributed and does not require exchange of control messages between nodes. Implementing our protocol in software we combine it with two well-known data propagation protocols and evaluate the achieved performance through a detailed simulation study using our extended version of the network simulator ns-2. We focus on highly dynamic scenarios with respect to network density, traffic conditions and sensor node resources. We propose a new general and parameterized metric capturing the trade-offs between delivery rate, energy efficiency and latency. The simulation findings demonstrate significant gains (such as more than doubling the success rate of the well-known Directed Diffusion propagation protocol) and good trade-offs achieved. Furthermore, the redeployment of additional sensors during network evolution and/or the heterogeneous deployment of sensors, drastically improve (when compared to ``equal total power" simultaneous deployment of identical sensors at the start) the protocol performance (i.e. the success rate increases up to four times while reducing energy dissipation and, interestingly, keeping latency low).
Chatzigiannakis, Ioannis
Kinalis, Athanasios
Nikoletseas, Sotiris
tocs08ichatz.pdf (main file)
Publication ID87