research unit 1

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit


Type of publication:Article
Entered by:chita
TitleThe Price of Anarchy is Unbounded for Congestion Games with Superpolynomial Latency Costs
Bibtex cite IDRACTI-RU1-2013-42
Journal CoRR
Year published 2013
We consider non-cooperative unsplittable congestion games where players share resources, and each player's strategy is pure and consists of a subset of the resources on which it applies a fixed weight. Such games represent unsplittable routing flow games and also job allocation games. The congestion of a resource is the sum of the weights of the players that use it and the player's cost function is the sum of the utilities of the resources on its strategy. The social cost is the total weighted sum of the player's costs. The quality of Nash equilibria is determined by the price of anarchy (PoA) which expresses how much worse is the social outcome in the worst equilibrium versus the optimal coordinated solution. In the literature the predominant work has only been on games with polynomial utility costs, where it has been proven that the price of anarchy is bounded by the degree of the polynomial. However, no results exist on general bounds for non-polynomial utility functions. Here, we consider general versions of these games in which the utility of each resource is an arbitrary non-decreasing function of the congestion. In particular, we consider a large family of superpolynomial utility functions which are asymptotically larger than any polynomial. We demonstrate that for every such function there exist games for which the price of anarchy is unbounded and increasing with the number of players (even if they have infinitesimal weights) while network resources remain fixed. We give tight lower and upper bounds which show this dependence on the number of players. Furthermore we provide an exact characterization of the PoA of all congestion games whose utility costs are bounded above by a polynomial function. Heretofore such results existed only for games with polynomial cost functions.
Kannan, Rajgopal
Busch, Costas
Spirakis, Paul
1308.4101.pdf (main file)
Publication ID1037