Abstract | We study the problem of localizing and tracking multiple moving targets in wireless sensor
networks, from a network design perspective i.e. towards estimating the least possible number
of sensors to be deployed, their positions and operation chatacteristics needed to perform the
tracking task. To avoid an expensive massive deployment, we try to take advantage of
possible coverage ovelaps over space and time, by introducing a novel combinatorial model
that captures such overlaps.
Under this model, we abstract the tracking network design problem by a combinatorial
problem of covering a universe of elements by at least three sets (to ensure that each point in
the network area is covered at any time by at least three sensors, and thus being localized). We
then design and analyze an efficient approximate method for sensor placement and operation,
that with high probability and in polynomial expected time achieves a (log n) approximation
ratio to the optimal solution. Our network design solution can be combined with alternative
collaborative processing methods, to suitably fit different tracking scenaria. |