research unit 1
 

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit Aigaion.nl.SourceForge.hetLogo

Publication

Type of publication:Article
Entered by:
TitleA Combined Fuzzy-Neural Network Model for Non-Linear Prediction of 3D Rendering Workload in Grid Computing
Bibtex cite IDRACTI-RU1-2004-34
Journal IEEE Transactions on Systems Man and Cybernetrics Part B-Cybernetics
Year published 2004
Month April
Volume 34
Number 2
Pages 1235-1247
ISSN 1083-4419
DOI 10.1109/tsmcb.2003.822282
Keywords Grid computing,workload prediction,neural networks,three-dimensional (3-D) rendering.
Abstract
Implementation of a commercial application to a grid infrastructure introduces new challenges in managing the quality-of-service (QoS) requirements, most stem from the fact that negotiation on QoS between the user and the service provider should strictly be satisfied. An interesting commercial application with a wide impact on a variety of fields, which can benefit from the computational grid technologies, is three–dimensional (3-D) rendering. In order to implement, however, 3-D rendering to a grid infrastructure, we should develop appropriate scheduling and resource allocation mechanisms so that the negotiated (QoS) requirements are met. Efficient scheduling schemes require modeling and prediction of rendering workload. In this paper workload prediction is addressed based on a combined fuzzy classification and neural network model. Initially, appropriate descriptors are extracted to represent the synthetic world. The descriptors are obtained by parsing RIB formatted files, which provides a general structure for describing computer-generated images. Fuzzy classification is used for organizing rendering descriptor so that a reliable representation is accomplished which increases the prediction accuracy. Neural network performs workload prediction by modeling the nonlinear input-output relationship between rendering descriptors and the respective computational complexity. To increase prediction accuracy, a constructive algorithm is adopted in this paper to train the neural network so that network weights and size are simultaneously estimated. Then, a grid scheduler scheme is proposed to estimate the queuing order that the tasks should be executed and the most appopriate processor assignment so that the demanded QoS are satisfied as much as possible. A fair scheduling policy is considered as the most appropriate. Experimental results on a real grid infrastructure are presented to illustrate the efficiency of the proposed workload prediction — scheduling algorithm compared to other approaches presented in the literature.
Authors
Doulamis, A.
Doulamis, N.
Panagakis, A.
Dolkas, K
Varvarigou, T.
Varvarigos, Emmanouel
Topics
Top
BibTeXBibTeX
RISRIS
Attachments
getPDF.pdf (main file)
 
Publication ID309