research unit 1

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit


Type of publication:Inproceedings
Entered by:
TitleExperimental Results for Stackelberg Scheduling Strategies
Bibtex cite IDRACTI-RU1-2005-41
Booktitle 4th International Workshop on Efficient and Experimental Algorithms (WEA 2005)
Series Lecture Notes in Computer Science
Year published 2005
Month May
Volume 3503/2005
Pages 77-88
DOI 10.1007/11427186_9
In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game. We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameter c. We validate a variant (NLS) of the Largest Latency First (LLF) Leaderrsquos strategy on tuples with PoA ge c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion agr of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leaderrsquos portion agr0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding agr0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.
Kaporis, Alexis
Kirousis, Lefteris
Politopoulou, E. I.
Spirakis, Paul
fulltext.pdf (main file)
Publication ID355