research unit 1
 

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit Aigaion.nl.SourceForge.hetLogo

Publication

Type of publication:Inproceedings
Entered by:
TitleRadiocoloring Graphs via the Probabilistic Method
Bibtex cite IDRACTI-RU1-2003-26
Booktitle 4th Panhellenic Logic Symposium 2003
Year published 2003
Month July
Pages 135-140
Location Thessaloniki, Greece
URL http://www2.cs.ucy.ac.cy/projects/pls4/
Abstract
We employ here the Probabilistic Method, a way of reasoning which shows existence of combinatorial structures and properties to prove refute conjectures. The radiocoloring problem (RCP) is the problem of assigning frequencies to the transmitters of a network so that transmitters of distance one get frequencies that di#er by at least two and any two transmitters of distance one get frequencies that di#er by at least one. The objective of an assignment may be to minimize the number of frequencies used (order) or the range of them (span). Here, we study the optimization version of RCP where the objective is to minimize the order. In graph theory terms the problem is modelled by a variation of the vertex graph coloring problem. We investigate upper bounds for the minimum number of colors needed in a radiocoloring assignment of a graph G. We first provide an upper bound for the minimum number of colors needed to radiocolor a graph G of girth at most 7. Then, we study whether the minimum order of a radiocoloring assignment is determined by local conditions, i.e. by the minimum order radiocoloring assignment of some small subgraphs of it. We state a related conjecture which is analogous to a theorem of Molloy and Reed for the vertex coloring problem [12]. We then investigate whether the conjecture contradicts a Theorem of Molloy and Reed for the vertex coloring when applied on the graph G 2
Authors
Nikoletseas, Sotiris
Papadopoulou, Viki
Spirakis, Paul
Topics
Top
BibTeXBibTeX
RISRIS
Attachments
 
Publication ID381