Abstract | In many fields of application, shortest path finding problems
in very large graphs arise. Scenarios where large numbers of on-line
queries for shortest paths have to be processed in real-time appear for example
in traffic information systems. In such systems, the techniques considered
to speed up the shortest path computation are usually based on
precomputed information. One approach proposed often in this context
is a space reduction, where precomputed shortest paths are replaced by
single edges with weight equal to the length of the corresponding shortest
path. In this paper, we give a first systematic experimental study of
such a space reduction approach. We introduce the concept of multi-level
graph decomposition. For one specific application scenario from the field
of timetable information in public transport, we perform a detailed analysis
and experimental evaluation of shortest path computations based
on multi-level graph decomposition. |