Abstract | Intuitively, Braess's paradox states that destroying a part
of a network may improve the common latency of selsh
ows at Nash
equilibrium. Such a paradox is a pervasive phenomenon in real-world
networks. Any administrator, who wants to improve equilibrium delays
in selsh networks, is facing some basic questions: (i) Is the network
paradox-ridden? (ii) How can we delete some edges to optimize equilibrium
ow delays? (iii) How can we modify edge latencies to optimize
equilibrium
ow delays?
Unfortunately, such questions lead to NP-hard problems in general. In
this work, we impose some natural restrictions on our networks, e.g.
we assume strictly increasing linear latencies. Our target is to formulate
ecient algorithms for the three questions above.We manage to provide:
A polynomial-time algorithm that decides if a network is paradoxridden,
when latencies are linear and strictly increasing.
A reduction of the problem of deciding if a network with arbitrary
linear latencies is paradox-ridden to the problem of generating all
optimal basic feasible solutions of a Linear Program that describes
the optimal trac allocations to the edges with constant latency.
An algorithm for nding a subnetwork that is almost optimal wrt
equilibrium latency. Our algorithm is subexponential when the number
of paths is polynomial and each path is of polylogarithmic length.
A polynomial-time algorithm for the problem of nding the best
subnetwork, which outperforms any known approximation algorithm
for the case of strictly increasing linear latencies.
A polynomial-time method that turns the optimal
ow into a Nash
ow by deleting the edges not used by the optimal
ow, and performing
minimal modications to the latencies of the remaining ones.
Our results provide a deeper understanding of the computational complexity
of recognizing the Braess's paradox most severe manifestations,
and our techniques show novel ways of using the probabilistic method
and of exploiting convex separable quadratic programs. |