research unit 1
 

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit Aigaion.nl.SourceForge.hetLogo

Publication

Type of publication:Inproceedings
Entered by:
TitleSocially desirable approximations for Dodgson's voting rule
Bibtex cite IDRACTI-RU1-2010-20
Booktitle 11th ACM Conference on Electronic Commerce, EC 2010
Year published 2010
Pages 253-262
Abstract
In 1876 Charles Lutwidge Dodgson suggested the intriguing voting rule that today bears his name. Although Dodgson's rule is one of the most well-studied voting rules, it suffers from serious de ciencies, both from the computational point of view|it is NP-hard even to approximate the Dodgson score within sublogarithmic factors|and from the social choice point of view|it fails basic social choice desiderata such as monotonicity and homogeneity. In a previous paper [Caragiannis et al., SODA 2009] we have asked whether there are approximation algorithms for Dodgson's rule that are monotonic or homogeneous. In this paper we give de nitive answers to these questions. We design a monotonic exponential-time algorithm that yields a 2-approximation to the Dodgson score, while matching this result with a tight lower bound. We also present a monotonic polynomial-time O(logm)-approximation algorithm (where m is the number of alternatives); this result is tight as well due to a complexity-theoretic lower bound. Furthermore, we show that a slight variation of a known voting rule yields a monotonic, homogeneous, polynomial-time O(mlogm)-approximation algorithm, and establish that it is impossible to achieve a better approximation ratio even if one just asks for homogeneity. We complete the picture by studying several additional social choice properties; for these properties, we prove that algorithms with an approximation ratio that depends only on m do not exist.
Authors
Caragiannis, Ioannis
Kaklamanis, Christos
Karanikolas, Nikos
Procaccia, A.D.
Topics
BibTeXBibTeX
RISRIS
Attachments
dodgson-approx.ec10-final.pdf (main file)
 
Publication ID746