research unit 1

This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit


Type of publication:Article
Entered by:
TitleDistributed top-k aggregation queries at large
Bibtex cite IDRACTI-RU1-2009-90
Journal Distributed and Parallel Databases, DAPD
Year published 2009
Month June
Keywords Top-k,Distributed queries,Query optimization,Cost models
Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network.
Neumann, Thomas
Bender, Matthias
Michel, Sebastian
Schenkel, Ralf
Triantafillou, Peter
Weikum, Gerhard
fulltext.pdf (main file)
Publication ID757