Abstract: We consider algorithmic questions concerning the existence,
tractability and quality of atomic congestion games, among users that
are considered to participate in (static) selfish coalitions. We carefully
define a coalitional congestion model among atomic players.
Our findings in this model are quite interesting, in the sense that we
demonstrate many similarities with the non–cooperative case. For example,
there exist potentials proving the existence of Pure Nash Equilibria
(PNE) in the (even unrelated) parallel links setting; the Finite Improvement
Property collapses as soon as we depart from linear delays, but
there is an exact potential (and thus PNE) for the case of linear delays,
in the network setting; the Price of Anarchy on identical parallel
links demonstrates a quite surprising threshold behavior: it persists on
being asymptotically equal to that in the case of the non–cooperative
KP–model, unless we enforce a sublogarithmic number of coalitions.
We also show crucial differences, mainly concerning the hardness of algorithmic
problems that are solved efficiently in the non–cooperative case.
Although we demonstrate convergence to robust PNE, we also prove the
hardness of computing them. On the other hand, we can easily construct
a generalized fully mixed Nash Equilibrium. Finally, we propose a new
improvement policy that converges to PNE that are robust against (even
dynamically forming) coalitions of small size, in pseudo–polynomial time.
Keywords. Game Theory, Atomic Congestion Games, Coalitions, Convergence
to Equilibria, Price of Anarchy.

Abstract: We consider algorithmic questions concerning the existence, tractability and quality of Nash equi-
libria, in atomic congestion games among users participating in selsh coalitions.
We introduce a coalitional congestion model among atomic players and demonstrate many in-
teresting similarities with the non-cooperative case. For example, there exists a potential function
proving the existence of Pure Nash Equilibria (PNE) in the unrelated parallel links setting; in
the network setting, the Finite Improvement Property collapses as soon as we depart from linear
delays, but there is an exact potential (and thus PNE) for linear delays; the Price of Anarchy on
identical parallel links demonstrates a quite surprising threshold behavior: it persists on being
asymptotically equal to that in the case of the non-cooperative KP-model, unless the number of
coalitions is sublogarithmic.
We also show crucial dierences, mainly concerning the hardness of algorithmic problems that
are solved eciently in the non{cooperative case. Although we demonstrate convergence to robust
PNE, we also prove the hardness of computing them. On the other hand, we propose a generalized
fully mixed Nash Equilibrium, that can be eciently constructed in most cases. Finally, we
propose a natural improvement policy and prove its convergence in pseudo{polynomial time to
PNE which are robust against (even dynamically forming) coalitions of small size.

Abstract: We consider algorithmic questions concerning the existence,
tractability and quality of atomic congestion games, among users that
are considered to participate in (static) selfish coalitions. We carefully
define a coalitional congestion model among atomic players.
Our findings in this model are quite interesting, in the sense that we
demonstrate many similarities with the non–cooperative case. For example,
there exist potentials proving the existence of Pure Nash Equilibria
(PNE) in the (even unrelated) parallel links setting; the Finite Improvement
Property collapses as soon as we depart from linear delays, but
there is an exact potential (and thus PNE) for the case of linear delays,
in the network setting; the Price of Anarchy on identical parallel
links demonstrates a quite surprising threshold behavior: it persists on
being asymptotically equal to that in the case of the non–cooperative
KP–model, unless we enforce a sublogarithmic number of coalitions.
We also show crucial differences, mainly concerning the hardness of algorithmic
problems that are solved efficiently in the non–cooperative case.
Although we demonstrate convergence to robust PNE, we also prove the
hardness of computing them. On the other hand, we can easily construct
a generalized fully mixed Nash Equilibrium. Finally, we propose a new
improvement policy that converges to PNE that are robust against (even
dynamically forming) coalitions of small size, in pseudo–polynomial time.
Keywords. Game Theory, Atomic Congestion Games, Coalitions, Convergence
to Equilibria, Price of Anarchy.

Abstract: We study congestion games where players aim to access a set of resources. Each player has a set of possible strategies and each resource has a function associating the latency it incurs to the players using it. Players are non–cooperative and each wishes to follow strategies that minimize her own latency with no regard to the global optimum. Previous work has studied the impact of this selfish behavior to system performance. In this paper, we study the question of how much the performance can be improved if players are forced to pay taxes for using resources. Our objective is to extend the original game so that selfish behavior does not deteriorate performance. We consider atomic congestion games with linear latency functions and present both negative and positive results. Our negative results show that optimal system performance cannot be achieved even in very simple games. On the positive side, we show that there are ways to assign taxes that can improve the performance of linear congestion games by forcing players to follow strategies where the total latency suffered is within a factor of 2 of the minimum possible; this result is shown to be tight. Furthermore, even in cases where in the absence of taxes the system behavior may be very poor, we show that the total disutility of players (latency plus taxes) is not much larger than the optimal total latency. Besides existential results, we show how to compute taxes in time polynomial in the size of the game by solving convex quadratic programs. Similar questions have been extensively studied in the model of non-atomic congestion games. To the best of our knowledge, this is the first study of the efficiency of taxes in atomic congestion games.