Abstract: Andrews et al. [Automatic method for hiding latency in high bandwidth networks, in: Proceedings of the ACM Symposium on Theory of Computing, 1996, pp. 257–265; Improved methods for hiding latency in high bandwidth networks, in: Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures, 1996, pp. 52–61] introduced a number of techniques for automatically hiding latency when performing simulations of networks with unit delay links on networks with arbitrary unequal delay links. In their work, they assume that processors of the host network are identical in computational power to those of the guest network being simulated. They further assume that the links of the host are able to pipeline messages, i.e., they are able to deliver P packets in time O(P+d) where d is the delay on the link.
In this paper we examine the effect of eliminating one or both of these assumptions. In particular, we provide an efficient simulation of a linear array of homogeneous processors connected by unit-delay links on a linear array of heterogeneous processors connected by links with arbitrary delay. We show that the slowdown achieved by our simulation is optimal. We then consider the case of simulating cliques by cliques; i.e., a clique of heterogeneous processors with arbitrary delay links is used to simulate a clique of homogeneous processors with unit delay links. We reduce the slowdown from the obvious bound of the maximum delay link to the average of the link delays. In the case of the linear array we consider both links with and without pipelining. For the clique simulation the links are not assumed to support pipelining.
The main motivation of our results (as was the case with Andrews et al.) is to mitigate the degradation of performance when executing parallel programs designed for different architectures on a network of workstations (NOW). In such a setting it is unlikely that the links provided by the NOW will support pipelining and it is quite probable the processors will be heterogeneous. Combining our result on clique simulation with well-known techniques for simulating shared memory PRAMs on distributed memory machines provides an effective automatic compilation of a PRAM algorithm on a NOW.