Abstract: Two important performance parameters of distributed, rate-based flow control algorithms are their locality and convergencecomplexity. The former is characterized by the amount of global knowledge that is available to their scheduling mechanisms, while the latter is defined as the number of update operations performed on rates of individual sessions until max-min fairness is reached. Optimistic algorithms allow any session to intermediately receive a rate larger than its max-min fair rate; bottleneck algorithms finalize the rate of a session only if it is restricted by a certain, highly congested link of the network. In this work, we present a comprehensive collection of lower and upper bounds on convergencecomplexity, under varying degrees of locality, for optimistic, bottleneck, rate-based flow control algorithms. Say that an algorithm is oblivious if its scheduling mechanism uses no information of either the session rates or the network topology. We present a novel, combinatorial construction of a capacitated network, which we use to establish a fundamental lower bound of dn 4 + n 2 on the convergencecomplexity of any oblivious algorithm, where n is the number of sessions laid out on a network, and d, the session dependency, is a measure of topological dependencies among sessions. Moreover, we devise a novel simulation proof to establish that, perhaps surprisingly, the lower bound of dn 4 + n 2 on convergencecomplexity still holds for any partially oblivious algorithm, in which the scheduling mechanism is allowed to use information about session rates, but is otherwise unaware of network topology. On the positive side, we prove that the lower bounds for oblivious and partially oblivious algorithms are both tight. We do so by presenting optimal oblivious algorithms, which converge after dn 2 + n 2 update operations are performed in the worst case. To complete the picture, we show that linear convergencecomplexity can indeed be achieved if information about both session rates and network topology is available to schedulers. We present a counterexample, nonoblivious algorithm, which converges within an optimal number of n update operations. Our results imply a surprising convergencecomplexity collapse of oblivious and partially oblivious algorithms, and a convergencecomplexity separation between (partially) oblivious and nonoblivious algorithms for optimistic, bottleneck rate-based flow control.

Abstract: Evolutionary Game Theory is the study of strategic interactions
among large populations of agents who base their decisions on simple,
myopic rules. A major goal of the theory is to determine broad classes
of decision procedures which both provide plausible descriptions of selfish
behaviour and include appealing forms of aggregate behaviour. For example,
properties such as the correlation between strategiesą growth rates
and payoffs, the connection between stationary states and the well-known
game theoretic notion of Nash equilibria, as well as global guarantees of
convergence to equilibrium, are widely studied in the literature.
Our paper can be seen as a quick introduction to Evolutionary Game
Theory, together with a new research result and a discussion of many
algorithmic and complexity open problems in the area. In particular, we
discuss some algorithmic and complexity aspects of the theory, which
we prefer to view more as Game Theoretic Aspects of Evolution rather
than as Evolutionary Game Theory, since the term “evolution” actually
refers to strategic adaptation of individualsą behaviour through a
dynamic process and not the traditional evolution of populations. We
consider this dynamic process as a self-organization procedure which,
under certain conditions, leads to some kind of stability and assures robustness
against invasion. In particular, we concentrate on the notion of
the Evolutionary Stable Strategies (ESS). We demonstrate their qualitative
difference from Nash Equilibria by showing that symmetric 2-person
games with random payoffs have on average exponentially less ESS than
Nash Equilibria. We conclude this article with some interesting areas of
future research concerning the synergy of Evolutionary Game Theory
and Algorithms.

Abstract: In this paper we present an implementation and performance evaluation of a descent algorithm that was proposed in \cite{tsaspi} for the computation of approximate Nash equilibria of non-cooperative bi-matrix games. This algorithm, which achieves the best polynomially computable \epsilon-approximate equilibria till now, is applied here to several problem instances designed so as to avoid the existence of easy solutions. Its performance is analyzed in terms of quality of approximation and speed of convergence. The results demonstrate significantly better performance than the theoretical worst case bounds, both for the quality of approximation and for the speed of convergence. This motivates further investigation into the intrinsic characteristics of descent algorithms applied to bi-matrix games. We discuss these issues and provide some insights about possible variations and extensions of the algorithmic concept that could lead to further understanding of the complexity of computing equilibria. We also prove here a new significantly better bound on the number of loops required for convergence of the descent algorithm.