Abstract: Using a set of geometric containers to speed up shortestpath queries in a weighted graph has been proven a useful tool for dealing with large sparse graphs. Given a layout of a graph G=(V,E), we store, for each edge (u,v)set membership, variantE, the bounding box of all nodes tset membership, variantV for which a shortest u-t-path starts with (u,v). Shortestpath queries can then be answered by DijkstraImage restricted to edges where the corresponding bounding box contains the target.
In this paper, we present new algorithms as well as an empirical study for the dynamic case of this problem, where edge weights are subject to change and the bounding boxes have to be updated. We evaluate the quality and the time for different update strategies that guarantee correct shortestpaths in an interesting application to railway information systems, using real-world data from six European countries.

Abstract: Many efforts have been done in the last years to model public transport timetables in order to
find optimal routes. The proposed models can be classified into two types: those representing the
timetable as an array, and those representing it as a graph. The array-based models have been
shown to be very effective in terms of query time, while the graph-based models usually answer
queries by computing shortestpaths, and hence they are suitable to be used in combination with
speed-up techniques developed for road networks.
In this paper, we focus on the dynamic behavior of graph-based models considering the case
where transportation systems are subject to delays with respect to the given timetable. We
make three contributions: (i) we give a simplified and optimized update routine for the wellknown
time-expanded model along with an engineered query algorithm; (ii) we propose a new
graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of
the proposed models and algorithms by an experimental study, which shows that both models
require negligible update time and a query time which is comparable to that required by some
array-based models.

Abstract: A fundamental approach in finding efficiently best routes or optimal itineraries in traffic information
systems is to reduce the search space (part of graph visited) of the most commonly used
shortestpath routine (Dijkstra¢s algorithm) on a suitably defined graph. We investigate reduction
of the search space while simultaneously retaining data structures, created during a preprocessing
phase, of size linear (i.e., optimal) to the size of the graph. We show that the search space of
Dijkstra¢s algorithm can be significantly reduced by extracting geometric information from a given
layout of the graph and by encapsulating precomputed shortest-path information in resulted geometric
objects (containers). We present an extensive experimental study comparing the impact of
different types of geometric containers using test data from real-world traffic networks. We also
present new algorithms as well as an empirical study for the dynamic case of this problem, where
edge weights are subject to change and the geometric containers have to be updated and show that
our new methods are two to three times faster than recomputing everything from scratch. Finally,
in an appendix, we discuss the software framework that we developed to realize the implementations
of all of our variants of Dijkstra¢s algorithm. Such a framework is not trivial to achieve as our
goal was to maintain a common code base that is, at the same time, small, efficient, and flexible,
as we wanted to enhance and combine several variants in any possible way.

Abstract: Dynamic graph algorithms have been extensively studied in the last two
decades due to their wide applicabilityin manycon texts. Recently, several
implementations and experimental studies have been conducted investigating
the practical merits of fundamental techniques and algorithms. In most
cases, these algorithms required sophisticated engineering and fine-tuning
to be turned into efficient implementations. In this paper, we surveysev -
eral implementations along with their experimental studies for dynamic
problems on undirected and directed graphs. The former case includes
dynamic connectivity, dynamic minimum spanning trees, and the sparsification
technique. The latter case includes dynamic transitive closure and
dynamicshortestpaths. We also discuss the design and implementation of
a software libraryfor dynamic graph algorithms.

Abstract: We describe algorithms for finding shortestpaths and distances in outerplanar and planar digraphs
that exploit the particular topology of the input graph. An important feature of our algorithms is that they can
work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the
case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time.
A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting
tradeoff between preprocessing, query, and update times depending on the value of a certain topological
parameter of the graph. Our results can be extended to n-vertex digraphs of genus O.n1¡"/ for any " > 0.

Abstract: In this work, we study the impact of dynamically changing link capacities on the delay bounds of LIS (Longest-In-System) and SIS (Shortest-In-System) protocols on specific networks (that can be modelled as Directed Acyclic Graphs (DAGs)) and stability bounds of greedy contention–resolution protocols running on arbitrary networks under the Adversarial Queueing Theory. Especially, we consider the model of dynamic capacities, where each link capacity may take on integer values from [1,C] with C>1, under a (w,\~{n})-adversary. We show that the packet delay on DAGs for LIS is upper bounded by O(iw\~{n}C) and lower bounded by {\`U}(iw\~{n}C) where i is the level of a node in a DAG (the length of the longest path leading to node v when nodes are ordered by the topological order induced by the graph). In a similar way, we show that the performance of SIS on DAGs is lower bounded by {\`U}(iw\~{n}C), while the existence of a polynomial upper bound for packet delay on DAGs when SIS is used for contention–resolution remains an open problem. We prove that every queueing network running a greedy contention–resolution protocol is stable for a rate not exceeding a particular stability threshold, depending on C and the length of the longest path in the network.

Abstract: We consider the problem of preprocessing an n-vertex digraph with real edge weights so that
subsequent queries for the shortestpath or distance between any two vertices can be efficiently answered. We
give algorithms that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms
can answer distance queries in O ({\'a}(n) ) time after O.n/ preprocessing. This improves upon previously known
results for the same problem.We also give a dynamic algorithm which, after a change in an edge weight, updates
the data structure in time O.n¯ /, for any constant 0 < ¯ < 1. Furthermore, an algorithm of independent interest
is given: computing a shortestpath tree, or finding a negative cycle in linear time.

Abstract: We consider the problem of preprocessing an n-vertex digraph with real edge weights so that subsequent queries for the shortestpath or distance between any two vertices can be efficiently answered. We give parallel algorithms for the EREW PRAM model of computation that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in O({\'a}(n)) time using a single processor, after a preprocessing of O(log2n) time and O(n) work, where {\'a}(n) is the inverse of Ackermann's function. The class of constant treewidth graphs contains outerplanar graphs and series-parallel graphs, among others. To the best of our knowledge, these are the first parallel algorithms which achieve these bounds for any class of graphs except trees. We also give a dynamic algorithm which, after a change in an edge weight, updates our data structures in O(log n) time using O(n{\^a}) work, for any constant 0 < {\^a} < 1. Moreover, we give an algorithm of independent interest: computing a shortestpath tree, or finding a negative cycle in O(log2n) time using O(n) work.