Abstract: We consider the Railway Traveling Salesman Problem. We
show that this problem can be reduced to a variant of the generalized
traveling salesman problem, defined on an undirected graph G = (V,E)
with the nodes partitioned into clusters, which consists in finding a mini-
mum cost cycle spanning a subset of nodes with the property that exactly
two nodes are chosen from each cluster. We describe an exact exponen-
tial time algorithm for the problem, as well we present two mixed integer
programming models of the problem. Based on one of this models pro-
posed, we present an efficient solution procedure based on a cutting plane
algorithm. Extensive computational results for instances taken from the
railroad company of the Netherlands Nederlandse Spoorwegen and involv-
ing graphs with up to 2182 nodes and 38650 edges are reported.

Abstract: Clustering is a crucial network design approach to enable large-scale wireless sensor networks (WSNs) deployments. A large variety of clustering approaches has been presented focusing on different performance metrics. Such protocols usually aim at minimizing communication overhead, evenly distributing roles among the participating nodes, as well as controlling the network topology. Simulations on such protocols are performed using theoretical models that are based on unrealistic assumptions like the unit disk graph communication model, ideal wireless communication channels and perfect energy consumption estimations. With these assumptions taken for granted, theoretical models claim various performance milestones that cannot be achieved in realistic conditions. In this paper, we design a new clustering protocol that adapts to the changes in the environment and the needs and goals of the user applications. We address the issues that hinder its performance due to the real environment conditions and provide a deployable protocol. The implementation, integration and experimentation of this new protocol and it's optimizations, were performed using the \textsf{WISEBED} framework. We apply our protocol in multiple indoors wireless sensor testbeds with multiple experimental scenarios to showcase scalability and trade-offs between network properties and configurable protocol parameters. By analysis of the real world experimental output, we present results that depict a more realistic view of the clustering problem, regarding adapting to environmental conditions and the quality of topology control. Our study clearly demonstrates the applicability of our approach and the benefits it offers to both research \& development communities.

Abstract: An ever growing emphasis is put nowadays in developing personalized journey planning and renewable mobility services in smart cities. These services combine means of scheduled-based public transport and electric vehicles or bikes, using crowdsourcing techniques for collecting real-time traffic information and for assessing the recommended routes. The goal is to develop an information system that will allow the fast, real-time computation of best routes.
The main challenges in developing such an information system are both technological and algorithmic. The technological challenge concerns the collection, storage, management, and updating of a huge volume of transport data that are usually time-dependent, and the provision (through these data) of personalized renewable mobility services in smartphones. This challenge is typically confronted by creating a cloud infrastructure that on the one hand will support the storage, management, and updating of data, while on the other hand it will handle the necessary data feed to the smartphone applications for providing the users with the requested best routes.
The algorithmic challenge concerns the development of innovative algorithms for the efficient provision of journey planning services in smartphones, based on data they will receive from the cloud infrastructure. These services guarantee the computation of realistic and useful best routes, as well as the updating of the precomputed (route and timetable) information, in case of delays of scheduled public transport vehicles, so that the users can online update their routes to destination. The goal is to develop an algorithmic basis for supporting modern renewable mobility services (information systems), such as "mobility on demand'' (where the next leg of a journey is decided in real-time) and "door-to-door'' personalized mobility, in urban scheduled-based public transport environments. Scheduled-based public transport information systems should not only compute in real-time end-user queries requesting best routes, but also to update the timetable information in case of delays.
The core algorithmic issues of mobility and journey planning (regarding the computation of optimal routes under certain criteria) in scheduled-based public transport systems concern the efficient solution of the fundamental earlier arrival (EA) problem (compute a journey from station S to station T minimizing the overall traveling time required to complete the journey), the minimum number of
transfers (MNT) problem (compute a journey from station S to station T minimizing the number of times a passenger is required to change vehicle), and the efficient updating of timetable information system in case of vehicle delays. The EA and MNT problems have been extensively studied in the literature under two main approaches: the array-based modeling (where the timetable is represented as an array) and the graph-based modeling (where the timetable is represented as a graph). Experimental results have shown so far that the array-based approaches are faster in terms of query time than graph-based ones, as they are able to better exploit data locality and do not rely on priority queues. On the other hand, the array-based approaches have not been theoretically or experimentally studied as far as the efficient updating of timetable information, in case of delays, is concerned.
In this thesis, new graph-based models are being developed that solve efficiently the aforementioned fundamental algorithmic mobility problems in urban scheduled-based public transport information systems, along with a mobile application (journey planner) running on Android-based smartphones that includes a service for the evaluation of the recommended routes by the users. In particular:
(a) An extensive comparative evaluation was conducted on graph-based dynamic models that represent big data volumes regarding their suitability for representing timetable information. The study confirmed that the realistic time-expanded model is the most suitable for representing timetable information.
(b) Two new graph-based models have been developed for representing timetable information (in a timetable information system), the reduced time-expanded model and the dynamic timetable model (DTM), both of which are more space-efficient with respect to the realistic time-expanded model. For both of the new models, new efficient algorithms were developed for fast answering of EA and MNT queries, as well as for updating the timetable information representation in case of delays.
(c)An experimental evaluation was conducted with the new graph-based models and their associated query and update algorithms on a set of 14 real-world scheduled-based transportation systems, including the metropolitan areas of Berlin, Athens, London, Rome, and Madrid. The experimental results showed that the query algorithms of the reduced time-expanded model are superior to those of the DTM model, while the reverse is true regarding the update algorithms. In addition, the experimental study showed that the query algorithms of the new graph-based models compete favorably with those of the best array-based models.
(d) A mobile, cloud-based, journey planner (information system) was developed whose core algorithmic engine builds upon the new graph-based models. The mobile application is accompanied by a service that allows the users to assess the recommended journeys. The journey planner demonstrates the practicality of the new graph-based models and their associated query and update algorithms.

Abstract: In this work, we overview some results concerning communication combinatorial properties in random intersection graphs and uniform random intersection graphs. These properties relate crucially to algorithmic design for important problems (like secure communication and frequency assignment) in distributed networks characterized by dense, local interactions and resource limitations, such as sensor networks. In particular, we present and discuss results concerning the existence of large independent sets of vertices whp in random instances of each of these models. As the main contribution of our paper, we introduce a new, general model, which we denote G(V, χ, f). In this model, V is a set of vertices and χ is a set of m vectors in ℝm. Furthermore, f is a probability distribution over the powerset 2χ of subsets of χ. Every vertex selects a random subset of vectors according to the probability f and two vertices are connected according to a general intersection rule depending on their assigned set of vectors. Apparently, this new general model seems to be able to simulate other known random graphmodels, by carefully describing its intersection rule.

Abstract: We survey here some recent computational models for networks of tiny artifacts. In particular, we focus on networks consisting of artifacts with sensing capabilities. We first imagine the artifacts moving passively, that is, being mobile but unable to control their own movement. This leads us to the population protocol model of Angluin et al. (2004) [16]. We survey this model and some of its recent enhancements. In particular, we also present the mediated population protocol model in which the interaction links are capable of storing states and the passively mobile machines model in which the finite state nature of the agents is relaxed and the agents become multitape Turing machines that use a restricted space. We next survey the sensor field model, a general model capturing some identifying characteristics of many sensor network¢s settings. A sensor field is composed of kinds of devices that can communicate one to the other and also to the environment through input/output data streams. We, finally, present simulation results between sensor fields and population protocols and analyze the capability of their variants to decide graph properties

Abstract: Here we survey various computational models for Wireless Sensor Networks (WSNs). The population protocol model (PP) considers networks of tiny mobile finite-state artifacts that can sense the environment and communicate in pairs to perform a computation. The mediated population protocol model (MPP) enhances the previous model by allowing the communication links to have a constant size buffer, providing more computational power. The graph decision MPP model (GDM) is a special case of MPP that focuses on the MPP's ability to decide graph properties of the network. Another direction towards enhancing the PP is followed by the PALOMA model in which the artifacts are no longer finite-state automata but Turing Machines of logarithmic memory in the population size. A different approach to modeling WSNs is the static synchronous sensor field model (SSSF) which describes devices communicating through a fixed communication graph and interacting with their environment via input and output data streams. In this survey, we present the computational capabilities of each model and provide directions for further research.

Abstract: Evaluating target tracking protocols for wireless sensor networks that can localize multiple mobile devices, can be a very challenging task. Such protocols usually aim at minimizing communication overhead, data processing for the participating nodes, as well as delivering adequate tracking information of the mobile targets in a timely manner. Simulations on such protocols are performed using theoretical models that are based on unrealistic assumptions like the unit disk graph communication model, ideal network localization and perfect distance estimations. With these assumptions taken for granted, theoretical models claim various performance milestones that cannot be achieved in realistic conditions. In this paper we design a new localization protocol, where mobile assets can be tracked passively via software agents. We address the issues that hinder its performance due to the real environment conditions and provide a deployable protocol. The implementation, integration and experimentation of this new protocol and it's optimizations, were performed using the WISEBED framework. We apply our protocol in multiple indoors wireless sensor testbeds with multiple experimental scenarios to showcase scalability and trade-offs between network properties and configurable protocol parameters. By analysis of the real world experimental output, we present results that depict a more realistic view of the target tracking problem, regarding power consumption and the quality of tracking information. Finally we also conduct some very focused simulations to assess the scalability of our protocol in very large networks and multiple mobile assets.

Abstract: Service Oriented Computing and its most famous implementation technology Web Services (WS) are becoming an important enabler of networked business models. Discovery mechanisms are a critical factor to the overall utility of Web Services. So far, discovery mechanisms based on the UDDI standard rely on many centralized and area-specific directories, which poses information stress problems such as performance bottlenecks and fault tolerance. In this context, decentralized approaches based on Peer to Peer overlay networks have been proposed by many researchers as a solution. In this paper, we propose a new structured P2P overlay network infrastructure designed for Web Services Discovery. We present theoretical analysis backed up by experimental results, showing that the proposed solution outperforms popular decentralized infrastructures for web discovery, Chord (and some of its successors), BATON (and it¢s successor) and Skip-Graphs.

Abstract: We consider two approaches that model timetable information in public transportation systems
as shortest-path problems in weighted graphs. In the time-expanded approach, every event at
a station, e.g., the departure of a train, is modeled as a node in the graph, while in the timedependent
approach the graph contains only one node per station. Both approaches have been
recently considered for (a simplified version of) the earliest arrival problem, but little is known
about their relative performance. Thus far, there are only theoretical arguments in favor of the
time-dependent approach. In this paper, we provide the first extensive experimental comparison of
the two approaches. Using several real-world data sets, we evaluate the performance of the basic
models and of several new extensions towards realistic modeling. Furthermore, new insights on
solving bicriteria optimization problems in both models are presented. The time-expanded approach
turns out to be more robust for modeling more complex scenarios, whereas the time-dependent
approach shows a clearly better performance.

Abstract: We consider two approaches that model timetable information in public transportation systems
as shortest-path problems in weighted graphs. In the time-expanded approach, every event at
a station, e.g., the departure of a train, is modeled as a node in the graph, while in the timedependent
approach the graph contains only one node per station. Both approaches have been
recently considered for (a simplified version of) the earliest arrival problem, but little is known
about their relative performance. Thus far, there are only theoretical arguments in favor of the
time-dependent approach. In this paper, we provide the first extensive experimental comparison of
the two approaches. Using several real-world data sets, we evaluate the performance of the basic
models and of several new extensions towards realistic modeling. Furthermore, new insights on
solving bicriteria optimization problems in both models are presented. The time-expanded approach
turns out to be more robust for modeling more complex scenarios, whereas the time-dependent
approach shows a clearly better performance.

Abstract: We present a set of three new time-dependent models with
increasing
exibility for realistic route planning in
flight networks. By
these means, we obtain small graph sizes while modeling airport procedures
in a realistic way. With these graphs, we are able to efficiently
compute a set of best connections with multiple criteria over a full day.
It even turns out that due to the very limited graph sizes it is feasible
to precompute full distance tables between all airports. As a result, best
connections can be retrieved in a few microseconds on real world data.

Abstract: Many efforts have been done in the last years to model public transport timetables in order to
find optimal routes. The proposed models can be classified into two types: those representing the
timetable as an array, and those representing it as a graph. The array-based models have been
shown to be very effective in terms of query time, while the graph-based models usually answer
queries by computing shortest paths, and hence they are suitable to be used in combination with
speed-up techniques developed for road networks.
In this paper, we focus on the dynamic behavior of graph-based models considering the case
where transportation systems are subject to delays with respect to the given timetable. We
make three contributions: (i) we give a simplified and optimized update routine for the wellknown
time-expanded model along with an engineered query algorithm; (ii) we propose a new
graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of
the proposed models and algorithms by an experimental study, which shows that both models
require negligible update time and a query time which is comparable to that required by some
array-based models.

Abstract: We investigate the existence and efficient algorithmic
construction of close to optimal independent sets in random models
of intersection graphs. In particular, (a) we propose \emph{a new model} for random intersection graphs
($G_{n, m, \vec{p}}$) which includes the model of
\cite{RIG} (the ``uniform" random intersection graphs model) as an
important special case. We also define an interesting variation of
the model of random intersection graphs, similar in spirit to
random regular graphs. (b) For this model we derive \emph{exact formulae} for the mean
and variance of the number of independent sets of size $k$ (for
any $k$) in the graph. (c) We then propose and analyse \emph{three algorithms} for the
efficient construction of large independent sets in this model.
The first two are variations of the greedy technique while the
third is a totally new algorithm. Our algorithms are analysed for
the special case of uniform random intersection graphs.
Our analyses show that these algorithms succeed in finding
\emph{close to optimal} independent sets for an interesting range
of graph parameters.

Abstract: Wireless sensor networks are about to be part of everyday life. Homes and workplaces capable of self-controlling and adapting air-conditioning for different temperature and humidity levels, sleepless forests ready to detect and react in case of a fire, vehicles able to avoid sudden obstacles or possibly able to self-organize routes to avoid congestion, and so on, will probably be commonplace in the very near future. Mobility plays a central role in such systems and so does passive mobility, that is, mobility of the network stemming from the environment itself. The population protocol model was an intellectual invention aiming to describe such systems in a minimalistic and analysis-friendly way. Having as a starting-point the inherent limitations but also the fundamental establishments of the population protocol model, we try in this monograph to present some realistic and practical enhancements that give birth to some new and surprisingly powerful (for this kind of systems) computational models.

Abstract: Wireless Sensor Networks (WSNs) constitute a recent and promising new
technology that is widely applicable. Due to the applicability of this
technology and its obvious importance for the modern distributed
computational world, the formal scientific foundation of its inherent laws
becomes essential. As a result, many new computational models for WSNs
have been proposed. Population Protocols (PPs) are a special category of
such systems. These are mainly identified by three distinctive
characteristics: the sensor nodes (agents) move passively, that is, they
cannot control the underlying mobility pattern, the available memory to
each agent is restricted, and the agents interact in pairs. It has been
proven that a predicate is computable by the PP model iff it is
semilinear. The class of semilinear predicates is a fairly small class. In
this work, our basic goal is to enhance the PP model in order to improve
the computational power. We first make the assumption that not only the
nodes but also the edges of the communication graph can store restricted
states. In a complete graph of n nodes it is like having added O(n2)
additional memory cells which are only read and written by the endpoints
of the corresponding edge. We prove that the new model, called Mediated
Population Protocol model, can operate as a distributed nondeterministic
Turing machine (TM) that uses all the available memory. The only
difference from a usual TM is that this one computes only symmetric
languages. More formally, we establish that a predicate is computable by
the new model iff it is symmetric and belongs to NSPACE(n2). Moreover, we
study the ability of the new model to decide graph languages (for general
graphs). The next step is to ignore the states of the edges and provide
another enhancement straight away from the PP model. The assumption now is
that the agents are multitape TMs equipped with infinite memory, that can
perform internal computation and interact with other agents, and we define
space-bounded computations. We call this the Passively mobile Machines
model. We prove that if each agent uses at most f(n) memory for f(n)={\`U}(log
n) then a predicate is computable iff it is symmetric and belongs to
NSPACE(nf(n)). We also show that this is not the case for f(n)=o(log n).
Based on these, we show that for f(n)={\`U}(log n) there exists a space
hierarchy like the one for classical symmetric TMs. We also show that the
latter is not the case for f(n)=o(loglog n), since here the corresponding
class collapses in the class of semilinear predicates and finally that for
f(n)={\`U}(loglog n) the class becomes a proper superset of semilinear
predicates. We leave open the problem of characterizing the classes for
f(n)={\`U}(loglog n) and f(n)=o(log n).

Abstract: Understanding the graph structure of the Internet is a crucial step for building accurate
network models and designing efﬁcient algorithms for Internet applications.Yet,obtaining this graph
structure can be a surprisingly difﬁcult task,as edges cannot be explicitly queried.For instance,
empirical studies of the network of InternetProtocol (IP) addresses typically rely on indirect methods
like trace route to build what are approximately single-source,all-destinations,shortest-path trees.
These trees only sample a fraction of the network’s edges,and a paper by Lakhinaetal.[2003]found
empirically that there sulting sample is intrinsically biased.Further,in simulations,they observed that the degree distribution under trace route sampling exhibits a power law even when the underlying
degree distribution is Poisson.

Abstract: The Moran process models the spread of genetic mutations through a population. A mutant with relative fitness r is introduced into a population and the system evolves, either reaching fixation (in which every individual is a mutant) or extinction (in which none is). In a widely cited paper (Nature, 2005), Lieberman, Hauert and Nowak generalize the model to populations on the vertices of graphs. They describe a class of graphs (called "superstars"), with a parameter k. Superstars are designed to have an increasing fixation probability as k increases. They state that the probability of fixation tends to 1−r−k as graphs get larger but we show that this claim is untrue as stated. Specifically, for k=5, we show that the true fixation probability (in the limit, as graphs get larger) is at most 1−1/j(r) where j(r)=Θ(r4), contrary to the claimed result. We do believe that the qualitative claim of Lieberman et al.\ --- that the fixation probability of superstars tends to 1 as k increases --- is correct, and that it can probably be proved along the lines of their sketch. We were able to run larger computer simulations than the ones presented in their paper. However, simulations on graphs of around 40,000 vertices do not support their claim. Perhaps these graphs are too small to exhibit the limiting behaviour.

Abstract: In this Phd thesis,, we try to use formal logic and threshold phenomena that asymptotically emerge with certainty in order to build new trust models and to evaluate the existing one. The departure point of our work is that dynamic, global computing systems are not amenable to a static viewpoint of the trust concept, no matter how this concept is formalized. We believe that trust should be a statistical, asymptotic concept to be studied in the limit as the system's components grow according to some growth rate. Thus, our main goal is to define trust as an emerging system property that ``appears'' or "disappears" when a set of properties hold, asymptotically with probability$ 0$ or $1$ correspondingly . Here we try to combine first and second order logic in order to analyze the trust measures of specific network models. Moreover we can use formal logic in order to determine whether generic reliability trust models provide a method for deriving trust between peers/entities as the network's components grow. Our approach can be used in a wide range of applications, such as monitoring the behavior of peers, providing a measure of trust between them, assessing the level of reliability of peers in a network. Wireless sensor networks are comprised of a vast number of ultra-small autonomous computing, communication and sensing devices, with restricted energy and computing capabilities, that co-operate to accomplish a large sensing task. Sensor networks can be very useful in practice. Such systems should at least guarantee the confidentiality and integrity of the information reported to the controlling authorities regarding the realization of environmental events. Therefore, key establishment is critical for the protection in wireless sensor networks and the prevention of adversaries from attacking the network. Finally in this dissertation we also propose three distributed group key establishment protocols suitable for such energy constrained networks. This dissertation is composed of two parts. Part I develops the theory of the first and second order logic of graphs - their definition, and the analysis of their properties that are expressible in the {\em first order language} of graphs. In part II we introduce some new distributed group key establishment protocols suitable for sensor networks. Several key establishment schemes are derived and their performance is demonstrated.

Abstract: We explore the capability of a network of extremely limited computational entities to decide properties about itself or any of its subnetworks. We consider that the underlying network of the interacting entities (devices, agents, processes etc.) is modeled by an interaction graph that reflects the network’s connectivity. We examine the following two cases: First, we consider the case where the input graph is the whole interaction graph and second where it is some subgraph of the interaction graph given by some preprocessing on the network. In each case, we devise simple graph protocols that can decide properties of the input graph. The computational entities, that are called agents, are modeled as finite-state automata and run the same global graph protocol. Each protocol is a fixed size grammar, that is, its description is independent of the size (number of agents) of the network. This size is not known by the agents. We present two simple models (one for each case), the Graph Decision Mediated Population Protocol (GDMPP) and the Mediated Graph Protocol (MGP) models, similar to the Population Protocol model of Angluin et al., where each network link (edge of the interaction graph) is characterized by a state taken from a finite set. This state can be used and updated during each interaction between the corresponding agents. We provide some example protocols and some interesting properties for the two models concerning the computability of graph languages in various settings (disconnected input graphs, stabilizing input graphs). We show that the computational power within the family of all (at least) weakly-connected input graphs is fairly restricted. Finally, we give an exact characterization of the class of graph languages decidable by the MGP model in the case of complete interaction graphs: it is equal to the class of graph languages decidable by a nondeterministic Turing Machine of linear space that receives its input graph by its adjacency matrix representation.

Abstract: We investigate the existence and efficient algorithmic construction
of close to optimal independent sets in random models of intersection
graphs. In particular, (a) we propose a new model for random
intersection graphs (Gn,m,p) which includes the model of [10] (the “uniform”
random intersection graphs model) as an important special case.
We also define an interesting variation of the model of random intersection
graphs, similar in spirit to random regular graphs. (b) For this
model we derive exact formulae for the mean and variance of the number
of independent sets of size k (for any k) in the graph. (c) We then propose
and analyse three algorithms for the efficient construction of large
independent sets in this model. The first two are variations of the greedy
technique while the third is a totally new algorithm. Our algorithms are
analysed for the special case of uniform random intersection graphs.
Our analyses show that these algorithms succeed in finding close to optimal
independent sets for an interesting range of graph parameters.

Abstract: We investigate the existence and efficient algorithmic construction of close to opti-
mal independent sets in random models of intersection graphs. In particular, (a) we
propose a new model for random intersection graphs (Gn,m,~p) which includes the
model of [10] (the “uniform” random intersection graphs model) as an important
special case. We also define an interesting variation of the model of random intersec-
tion graphs, similar in spirit to random regular graphs. (b) For this model we derive
exact formulae for the mean and variance of the number of independent sets of size
k (for any k) in the graph. (c) We then propose and analyse three algorithms for
the efficient construction of large independent sets in this model. The first two are
variations of the greedy technique while the third is a totally new algorithm. Our
algorithms are analysed for the special case of uniform random intersection graphs.
Our analyses show that these algorithms succeed in finding close to optimal in-
dependent sets for an interesting range of graph parameters.

Abstract: The timetable information problem can be solved by computing shortest paths in special graphs built from timetable data. In general, two models exist: the time-dependent and time-expanded network. In a recent work, both models are compared with respect to advantages and disadvantages on a theoretical and a practical framework. In addition, an extensive experimental evaluation reveals further differences with respect to query performance. However, delays which occur very frequently in railway systems are not covered. In this work, we show how the time-dependent and the time-expanded models should be updated in order to capture delays. It turns out that delays can be incorporated in the time-dependent model without changing the topology of the network. This is not true for the time-expanded model, whose updating involves a (sometimes large) sequence of edge insertions, deletions, and cost modifications.