Abstract: The study of the path coloring problem is motivated by the allocation of optical bandwidth to communication requests in all-optical networks that utilize Wavelength Division Multiplexing (WDM). WDM technology establishes communication between pairs of network nodes by establishing transmitter-receiver paths and assigning wavelengths to each path so that no two paths going through the same fiber link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. Since state-of-the-art technology allows for a limited number of wavelengths, the engineering problem to be solved is to establish communication minimizing the total number of wavelengths used. This is known as the wavelength routing problem. In the case where the underlying network is a tree, it is equivalent to the path coloring problem.
We survey recent advances on the path coloring problem in both undirected and bidirected trees. We present hardness results and lower bounds for the general problem covering also the special case of sets of symmetric paths (corresponding to the important case of symmetric communication). We give an overview of the main ideas of deterministic greedy algorithms and point out their limitations. For bidirected trees, we present recent results about the use of randomization for path coloring and outline approximation algorithms that find path colorings by exploiting fractional path colorings. Also, we discuss upper and lower bounds on the performance of on-line algorithms.

Abstract: We study the combinatorial structure and computational complexity of extreme Nash equilibria, ones that maximize or minimize a certain objective function, in the context of a selfish routing game. Specifically, we assume a collection of n users, each employing a mixed strategy, which is a probability distribution over m parallel links, to control the routing of its own assigned traffic. In a Nash equilibrium, each user routes its traffic on links that minimize its expected latency cost.
Our structural results provide substantial evidence for the Fully Mixed Nash Equilibrium Conjecture, which states that the worst Nash equilibrium is the fully mixed Nash equilibrium, where each user chooses each link with positive probability. Specifically, we prove that the Fully Mixed Nash Equilibrium Conjecture is valid for pure Nash equilibria and that under a certain condition, the social cost of any Nash equilibrium is within a factor of 6 + epsi, of that of the fully mixed Nash equilibrium, assuming that link capacities are identical.
Our complexity results include hardness, approximability and inapproximability ones. Here we show, that for identical link capacities and under a certain condition, there is a randomized, polynomial-time algorithm to approximate the worst social cost within a factor arbitrarily close to 6 + epsi. Furthermore, we prove that for any arbitrary integer k > 0, it is -hard to decide whether or not any given allocation of users to links can be transformed into a pure Nash equilibrium using at most k selfish steps. Assuming identical link capacities, we give a polynomial-time approximation scheme (PTAS) to approximate the best social cost over all pure Nash equilibria. Finally we prove, that it is -hard to approximate the worst social cost within a multiplicative factor . The quantity is the tight upper bound on the ratio of the worst social cost and the optimal cost in the model of identical capacities.

Abstract: In this work, we introduce the notion of time to some well-known combinatorial optimization problems. In particular, we study problems defined on temporal graphs. A temporal graph D=(V,A) may be viewed as a time-sequence G_1,G_2,...,G_l of static graphs over the same (static) set of nodes V. Each G_t = D(t) = (V,A(t)) is called the instance of D at time t and l is called the lifetime of D. Our main focus is on analogues of traveling salesman problems in temporal graphs. A sequence of time-labeled edges (e.g. a tour) is called temporal if its labels are strictly increasing. We begin by considering the problem of exploring the nodes of a temporal graph as soon as possible. In contrast to the positive results known for the static case, we prove that, it cannot be approximated within cn, for some constant c > 0, in general temporal graphs and within (2 − \varepsilon), for every constant \varepsilon > 0, in the special case in which D(t) is connected for all 1 <= t <= l, both unless P = NP. We then study the temporal analogue of TSP(1,2), abbreviated TTSP(1,2), where, for all 1 <= t <= l, D(t) is a complete weighted graph with edge-costs from {1,2} and the cost of an edge may vary from instance to instance. The goal is to find a minimum cost temporal TSP tour. We give several polynomial-time approximation algorithms for TTSP(1,2). Our best approximation is (1.7 + \varepsilon) for the generic TTSP(1,2) and (13/8 + \varepsilon) for its interesting special case in which the lifetime of the temporal graph is restricted to n. In the way, we also introduce temporal versions of Maximum Matching, Path Packing, Max-TSP, and Minimum Cycle Cover, for which we obtain polynomial-time approximation algorithms and hardness results.