Abstract: A crucial issue in wireless networks is to support efficiently communication patterns that are typical in traditional (wired) networks. These include broadcasting, multicasting, and gossiping (all-to-all communication). In this work we study such problems in static ad hoc networks. Since, in ad hoc networks, energy is a scarce resource, the important engineering question to be solved is to guarantee a desired communication pattern minimizing the total energy consumption. Motivated by this question, we study a series of wireless network design problems and present new approximation algorithms and inapproximability results.

Abstract: We study the combinatorial structure and computational complexity of extreme Nash equilibria, ones that maximize or minimize a certain objective function, in the context of a selfish routing game. Specifically, we assume a collection of n users, each employing a mixed strategy, which is a probability distribution over m parallel links, to control the routing of its own assigned traffic. In a Nash equilibrium, each user routes its traffic on links that minimize its expected latency cost.
Our structural results provide substantial evidence for the Fully Mixed Nash Equilibrium Conjecture, which states that the worst Nash equilibrium is the fully mixed Nash equilibrium, where each user chooses each link with positive probability. Specifically, we prove that the Fully Mixed Nash Equilibrium Conjecture is valid for pure Nash equilibria and that under a certain condition, the social cost of any Nash equilibrium is within a factor of 6 + epsi, of that of the fully mixed Nash equilibrium, assuming that link capacities are identical.
Our complexity results include hardness, approximability and inapproximability ones. Here we show, that for identical link capacities and under a certain condition, there is a randomized, polynomial-time algorithm to approximate the worst social cost within a factor arbitrarily close to 6 + epsi. Furthermore, we prove that for any arbitrary integer k > 0, it is -hard to decide whether or not any given allocation of users to links can be transformed into a pure Nash equilibrium using at most k selfish steps. Assuming identical link capacities, we give a polynomial-time approximation scheme (PTAS) to approximate the best social cost over all pure Nash equilibria. Finally we prove, that it is -hard to approximate the worst social cost within a multiplicative factor . The quantity is the tight upper bound on the ratio of the worst social cost and the optimal cost in the model of identical capacities.

Abstract: The voting rules proposed by Dodgson and Young are both
designed to nd the alternative closest to being a Condorcet
winner, according to two dierent notions of proximity; the
score of a given alternative is known to be hard to compute
under either rule.
In this paper, we put forward two algorithms for ap-
proximating the Dodgson score: an LP-based randomized
rounding algorithm and a deterministic greedy algorithm,
both of which yield an O(logm) approximation ratio, where
m is the number of alternatives; we observe that this result
is asymptotically optimal, and further prove that our greedy
algorithm is optimal up to a factor of 2, unless problems in
NP have quasi-polynomial time algorithms. Although the
greedy algorithm is computationally superior, we argue that
the randomized rounding algorithm has an advantage from
a social choice point of view.
Further, we demonstrate that computing any reasonable
approximation of the ranking produced by Dodgson's rule
is NP-hard. This result provides a complexity-theoretic
explanation of sharp discrepancies that have been observed
in the Social Choice Theory literature when comparing
Dodgson elections with simpler voting rules.
Finally, we show that the problem of calculating the
Young score is NP-hard to approximate by any factor. This
leads to an inapproximability result for the Young ranking.