Abstract: We consider the offline version of the routing and
wavelength assignment (RWA) problem in transparent all-optical
networks. In such networks and in the absence of regenerators,
the signal quality of transmission degrades due to physical layer
impairments. Because of certain physical effects, routing choices
made for one lightpath affect and are affected by the choices made
for the other lightpaths. This interference among the lightpaths
is particularly difficult to formulate in an offline algorithm since,
in this version of the problem, we start without any established
connections and the utilization of lightpaths are the variables of
the problem.We initially present an algorithm for solving the pure
(without impairments) RWA problem based on a LP-relaxation
formulation that tends to yield integer solutions. Then, we extend
this algorithm and present two impairment-aware (IA) RWA algorithms
that account for the interference among lightpaths in their
formulation. The first algorithm takes the physical layer indirectly
into account by limiting the impairment-generating sources. The
second algorithm uses noise variance-related parameters to directly
account for the most important physical impairments. The
objective of the resulting cross-layer optimization problem is not
only to serve the connections using a small number of wavelengths
(network layer objective), but also to select lightpaths that have
acceptable quality of transmission (physical layer objective).
Simulations experiments using realistic network, physical layer,
and traffic parameters indicate that the proposed algorithms can
solve real problems within acceptable time.

Abstract: This research attempts a first step towards investigating the aspect of radiation awareness in environments with abundant heterogeneous wireless networking. We call radiation at a point of a 3D wireless network the total amount of electromagnetic quantity the point is exposed to, our definition incorporates the effect of topology as well as the time domain, data traffic and environment aspects. Even if the impact of radiation to human health remains largely unexplored and controversial, we believe it is worth trying to understand and control. We first analyze radiation in well known topologies (random and grids), randomness is meant to capture not only node placement but also uncertainty of the wireless propagation model. This initial understanding of how radiation adds (over space and time) can be useful in network design, to reduce health risks. We then focus on the minimum radiation path problem of finding the lowest radiation trajectory of a person moving from a source to a destination point of the network region. We propose three heuristics which provide low radiation paths while keeping path length low, one heuristic gets in fact quite close to the offline solution we compute by a shortest path algorithm. Finally, we investigate the interesting impact on the heuristics' performance of diverse node mobility.