Abstract: The study of the path coloring problem is motivated by the allocation of optical bandwidth to communication requests in all-optical networks that utilize Wavelength Division Multiplexing (WDM). WDM technology establishes communication between pairs of network nodes by establishing transmitter-receiver paths and assigning wavelengths to each path so that no two paths going through the same fiber link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. Since state-of-the-art technology allows for a limited number of wavelengths, the engineering problem to be solved is to establish communication minimizing the total number of wavelengths used. This is known as the wavelength routing problem. In the case where the underlying network is a tree, it is equivalent to the path coloring problem.
We survey recent advances on the path coloring problem in both undirected and bidirected trees. We present hardness results and lower bounds for the general problem covering also the special case of sets of symmetric paths (corresponding to the important case of symmetric communication). We give an overview of the main ideas of deterministic greedy algorithms and point out their limitations. For bidirected trees, we present recent results about the use of randomization for path coloring and outline approximation algorithms that find path colorings by exploiting fractional path colorings. Also, we discuss upper and lower bounds on the performance of on-linealgorithms.
Abstract: In this paper we consider communication issues arising in mobile networks that utilize Frequency Division Multiplexing (FDM) technology. In such networks, many users within the same geographical region can communicate simultaneously with other users of the network using distinct frequencies. The spectrum of available frequencies is limited; thus, efficient solutions to the frequency allocation and the call control problem are essential. In the frequency allocation problem, given users that wish to communicate, the objective is to minimize the required spectrum of frequencies so that communication can be established without signal interference. The objective of the call control problem is, given a spectrum of available frequencies and users that wish to communicate, to maximize the number of users served. We consider cellular, planar, and arbitrary network topologies. In particular, we study the on-line version of both problems using competitive analysis. For frequency allocation in cellular networks, we improve the best known competitive ratio upper bound of 3 achieved by the folklore Fixed Allocation algorithm, by presenting an almost tight competitive analysis for the greedy algorithm; we prove that its competitive ratio is between 2.429 and 2.5. For the call control problem, we present the first randomized algorithm that beats the deterministic lower bound of 3 achieving a competitive ratio of 2.934 in cellular networks. Our analysis has interesting extensions to arbitrary networks. Also, using Yao's Minimax Principle, we prove two lower bounds of 1.857 and 2.086 on the competitive ratio of randomized call control algorithms for cellular and arbitrary planar networks, respectively.
Abstract: In this paper we consider communication issues arising in cellular (mobile) networks that utilize frequency division multiplexing (FDM) technology. In such networks, many users within the same geographical region can communicate simultaneously with other users of the network using distinct frequencies. The spectrum of available frequencies is limited; thus, efficient solutions to the frequency-allocation and the call-control problems are essential. In the frequency-allocation problem, given users that wish to communicate, the objective is to minimize the required spectrum of frequencies so that communication can be established without signal interference. The objective of the call-control problem is, given a spectrum of available frequencies and users that wish to communicate, to maximize the number of users served. We consider cellular, planar, and arbitrary network topologies.
In particular, we study the on-line version of both problems using competitive analysis. For frequency allocation in cellular networks, we improve the best known competitive ratio upper bound of 3 achieved by the folklore Fixed Allocation algorithm, by presenting an almost tight competitive analysis for the greedy algorithm; we prove that its competitive ratio is between 2.429 and 2.5 . For the call-control problem, we present the first randomized algorithm that beats the deterministic lower bound of 3 achieving a competitive ratio between 2.469 and 2.651 for cellular networks. Our analysis has interesting extensions to arbitrary networks. Also, using Yao's Minimax Principle, we prove two lower bounds of 1.857 and 2.086 on the competitive ratio of randomized call-control algorithms for cellular and arbitrary planar networks, respectively.
Abstract: We address the issue of measuring storage, or query load distribution fairness in peer-to-peer data management systems. Existing metrics may look promising from the point of view of specific peers, while in reality being far from optimal from a global perspective. Thus, first we define the requirements and study the appropriateness of various statistical metrics for measuring load distribution fairness towards these requirements. The metric proposed as most appropriate is the Gini coefficient (G). Second, we develop novel distributed sampling algorithms to compute G on-line, with high precision, efficiently, and scalably. Third, we show how G can readily be utilized on-line by higher-level algorithms which can now know when to best intervene to correct load imbalances. Our analysis and experiments testify for the efficiency and accuracy of these algorithms, permitting the online use of a rich and reliable metric, conveying a global perspective of the distribution.
Abstract: We study the on-line versions of two fundamental graph problems, maximum independent set and minimum coloring, for the case of disk graphs which are graphs resulting from intersections of disks on the plane. In particular, we investigate whether randomization can be used to break known lower bounds for deterministic on-line independent set algorithms and present new upper and lower bounds; we also present an improved upper bound for on-line coloring.
Abstract: We study the on-line version of the maximum independent set problem, for the case of disk graphs which are graphs resulting
from intersections of disks on the plane. In particular, we investigate whether randomization can be used to break known lower
bounds for deterministic on-line independent set algorithms and present new upper and lower bounds.
Abstract: We address an important communication issue in wireless cellular networks that utilize Frequency Division Multiplexing (FDM) technology. In such networks, many users within the same geographical region (cell) can communicate simultaneously with other users of the network using distinct frequencies. The spectrum of the available frequencies is limited; thus, efficient solutions to the call control problem are essential. The objective of the call control problem is, given a spectrum of available frequencies and users that wish to communicate, to maximize the number of users that communicate without signal interference. We consider cellular networks of reuse distance kge 2 and we study the on-line version of the problem using competitive analysis.
In cellular networks of reuse distance 2, the previously best known algorithm that beats the lower bound of 3 on the competitiveness of deterministic algorithms works on networks with one frequency, achieves a competitive ratio against oblivious adversaries which is between 2.469 and 2.651, and uses a number of random bits at least proportional to the size of the network. We significantly improve this result by presenting a series of simple randomized algorithms that have competitive ratios smaller than 3, work on networks with arbitrarily many frequencies, and use only a constant number of random bits or a comparable weak random source. The best competitiveness upper bound we obtain is 7/3.
In cellular networks of reuse distance k>2, we present simple randomized on-line call control algorithms with competitive ratios which significantly beat the lower bounds on the competitiveness of deterministic ones and use only random bits. Furthermore, we show a new lower bound on the competitiveness of on-line call control algorithms in cellular networks of reuse distance kge 5.