Abstract: We present a simple parallel algorithm for the single-source shortest path
problem in planar digraphs with nonnegative real edge weights. The algorithm runs
on the EREW PRAM model of parallel computation in O((n2=+n1&=) log n)
time, performing O(n1+= log n) work for any 0<{\aa}<1/2. The strength of the
algorithm is its simplicity, making it easy to implement and presumable quite
efficient in practice. The algorithm improves upon the work of all previous
parallelalgorithms. Our algorithm is based on a region decomposition of the
input graph and uses a well-known parallel implementation of Dijkstra's
algorithm. The logarithmic factor in both the work and the time can be
eliminated by plugging in a less practical, sequential planar shortest path
algorithm together with an improved parallel implementation of Dijkstra's
algorithm.

Abstract: The “small world” phenomenon, i.e., the fact that the
global social network is strongly connected in the sense
that every two persons are inter-related through a small
chain of friends, has attracted research attention and has
been strongly related to the results of the social
psychologist¢s Stanley Milgram experiments; properties
of social networks and relevant problems also emerge in
peer-to-peer systems and their study can shed light on
important modern network design properties.
In this paper, we have experimentally studied greedy
routing algorithms, i.e., algorithms that route information
using “long-range” connections that function as
shortcuts connecting “distant” network nodes. In
particular, we have implemented greedy routing
algorithms, and techniques from the recent literature in
networks of line and grid topology using parallelization
for increasing efficiency. To the best of our knowledge, no
similar attempt has been made so far

Abstract: When one engineers distributed algorithms, some special characteristics
arise that are different from conventional (sequential or parallel)
computing paradigms. These characteristics include: the need for either a
scalable real network environment or a platform supporting a simulated
distributed environment; the need to incorporate asynchrony, where arbitrarya
synchrony is hard, if not impossible, to implement; and the generation
of “difficult” input instances which is a particular challenge. In this
work, we identifys ome of the methodological issues required to address
the above characteristics in distributed algorithm engineering and illustrate
certain approaches to tackle them via case studies. Our discussion
begins byad dressing the need of a simulation environment and how asynchronyis
incorporated when experimenting with distributed algorithms.
We then proceed bys uggesting two methods for generating difficult input
instances for distributed experiments, namelya game-theoretic one and another
based on simulations of adversarial arguments or lower bound proofs.
We give examples of the experimental analysis of a pursuit-evasion protocol
and of a shared memorypro blem in order to demonstrate these ideas.
We then address a particularlyi nteresting case of conducting experiments
with algorithms for mobile computing and tackle the important issue of
motion of processes in this context. We discuss the two-tier principle as
well as a concurrent random walks approach on an explicit representation
of motions in ad-hoc mobile networks, which allow at least for averagecase
analysis and measurements and may give worst-case inputs in some
cases. Finally, we discuss a useful interplay between theory and practice
that arise in modeling attack propagation in networks.

Abstract: Andrews et al. [Automatic method for hiding latency in high bandwidth networks, in: Proceedings of the ACM Symposium on Theory of Computing, 1996, pp. 257–265; Improved methods for hiding latency in high bandwidth networks, in: Proceedings of the Eighth Annual ACM Symposium on ParallelAlgorithms and Architectures, 1996, pp. 52–61] introduced a number of techniques for automatically hiding latency when performing simulations of networks with unit delay links on networks with arbitrary unequal delay links. In their work, they assume that processors of the host network are identical in computational power to those of the guest network being simulated. They further assume that the links of the host are able to pipeline messages, i.e., they are able to deliver P packets in time O(P+d) where d is the delay on the link.
In this paper we examine the effect of eliminating one or both of these assumptions. In particular, we provide an efficient simulation of a linear array of homogeneous processors connected by unit-delay links on a linear array of heterogeneous processors connected by links with arbitrary delay. We show that the slowdown achieved by our simulation is optimal. We then consider the case of simulating cliques by cliques; i.e., a clique of heterogeneous processors with arbitrary delay links is used to simulate a clique of homogeneous processors with unit delay links. We reduce the slowdown from the obvious bound of the maximum delay link to the average of the link delays. In the case of the linear array we consider both links with and without pipelining. For the clique simulation the links are not assumed to support pipelining.
The main motivation of our results (as was the case with Andrews et al.) is to mitigate the degradation of performance when executing parallel programs designed for different architectures on a network of workstations (NOW). In such a setting it is unlikely that the links provided by the NOW will support pipelining and it is quite probable the processors will be heterogeneous. Combining our result on clique simulation with well-known techniques for simulating shared memory PRAMs on distributed memory machines provides an effective automatic compilation of a PRAM algorithm on a NOW.

Abstract: The problem of finding an implicit representation for a graph such that vertex adjacency can be tested quickly is fundamental to all graph algorithms. In particular, it is possible to represent sparse graphs on n vertices using O(n) space such that vertex adjacency is tested in O(l) time. We show here how to construct such a representation efficiently by providing simple and optimal algorithms, both in a sequential and a parallel setting. Our sequential algorithm runs in O(n) time. The parallel algorithm runs in O(log n) time using O(n/log n) CRCW PRAM processors, or inO(log n log* n) time using O(n/log n log* n) EREW PRAM processors. Previous results for this problem are based on matroid partitioning and thus have a high complexity.

Abstract: We consider the problem of computing minimum congestion,
fault-tolerant, redundant assignments of messages to faulty parallel de-
livery channels. In particular, we are given a set M of faulty channels,
each having an integer capacity ci and failing independently with proba-
bility fi. We are also given a set of messages to be delivered over M, and
a fault-tolerance constraint (1), and we seek a redundant assignment
that minimizes congestion Cong(), i.e. the maximum channel load,
subject to the constraint that, with probability no less than (1 ), all
the messages have a copy on at least one active channel. We present a
4-approximation algorithm for identical capacity channels and arbitrary
message sizes, and a 2l ln(jMj=)
ln(1=fmax)m-approximation algorithm for related
capacity channels and unit size messages.
Both algorithms are based on computing a collection of disjoint chan-
nel subsets such that, with probability no less than (1 ), at least one
channel is active in each subset. The objective is to maximize the sum of
the minimum subset capacities. Since the exact version of this problem
is NP-complete, we present a 2-approximation algorithm for identical
capacities, and a (8 + o(1))-approximation algorithm for arbitrary ca-
pacities.

Abstract: We consider the problem of computing minimum congestion, fault-tolerant, redundant assignments of messages to faulty, parallel delivery channels. In particular, we are given a set K of faulty channels, each having an integer capacity ci and failing independently with probability fi. We are also given a set M of messages to be delivered over K, and a fault-tolerance constraint (1 - {\aa}), and we seek a redundant assignment {\"o} that minimizes congestion Cong({\"o}), i.e. the maximum channel load, subject to the constraint that, with probability no less than (1 - e), all the messages have a copy on at least one active channel. We present a polynomial-time 4-approximation algorithm for identical capacity channels and arbitrary message sizes, and a 2[ln(|K|/{\aa})/ln(1/fmax)]-approximation algorithm for related capacity channels and unit size messages. Both algorithms are based on computing a collection (K1,., K{\'i}} of disjoint channel subsets such that, with probability no less than (1 - {\aa}), at least one channel is active in each subset. The objective is to maximize the sum of the minimum subset capacities. Since the exact version of this problem is NP-complete, we provide a 2-approximation algorithm for identical capacities, and a polynomial-time (8+o(1))-approximation algorithm for arbitrary capacities.

Abstract: Two simple and work-efficient parallelalgorithms for the minimum spanning tree problem are presented. Both algorithms perform O( m log n ) work. The first algorithm
runs in O( log^2 n ) time on an EREW PRAM while the second algorithm runs in O( log n ) time on a Common CRCW PRAM.

Abstract: We consider in this paper the problem of scheduling a set of independent
parallel tasks (jobs) with respect to two criteria, namely,
the makespan (time of the last finishing job) and the minsum (average
completion time). There exist several algorithms with a good
performance guaranty for one of these criteria. We are interested
here in studying the optimization of both criteria simultaneously.
The numerical values are given for the moldable task model, where
the execution time of a task depends on the number of processors
alloted to it. The main result of this paper is to derive explicitly
a family of algorithms guaranteed for both the minsum and the
makespan. The performance guaranty of these algorithms is better
than the best algorithms known so far. The Guaranty curve
of the family is the set of all points (x; y) such that there is an
algorithm with guarantees x on makespan and y on the minsum.
When the ratio on the minsum increases, the curve tends to the
best ratio known for the makespan for moldable tasks (3=2). One
extremal point of the curves is a (3;6)-approximation algorithm.
Finally a randomized version is given, which improves this results
to (3;4.08).

Abstract: We consider the problem of preprocessing an n-vertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give parallelalgorithms for the EREW PRAM model of computation that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in O({\'a}(n)) time using a single processor, after a preprocessing of O(log2n) time and O(n) work, where {\'a}(n) is the inverse of Ackermann's function. The class of constant treewidth graphs contains outerplanar graphs and series-parallel graphs, among others. To the best of our knowledge, these are the first parallelalgorithms which achieve these bounds for any class of graphs except trees. We also give a dynamic algorithm which, after a change in an edge weight, updates our data structures in O(log n) time using O(n{\^a}) work, for any constant 0 < {\^a} < 1. Moreover, we give an algorithm of independent interest: computing a shortest path tree, or finding a negative cycle in O(log2n) time using O(n) work.

Abstract: Let M be a single s-t network of parallel links with load dependent latency functions shared by an infinite number of selfish users. This may yield a Nash equilibrium with unbounded Coordination Ratio [E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in: 16th Annual Symposium on Theoretical Aspects of Computer Science, STACS, vol. 1563, 1999, pp. 404-413; T. Roughgarden, E. Tardos, How bad is selfish routing? in: 41st IEEE Annual Symposium of Foundations of Computer Science, FOCS, 2000, pp. 93-102]. A Leader can decrease the coordination ratio by assigning flow {\'a}r on M, and then all Followers assign selfishly the (1-{\'a})r remaining flow. This is a Stackelberg Scheduling Instance(M,r,{\'a}),0≤{\'a}≤1. It was shown [T. Roughgarden, Stackelberg scheduling strategies, in: 33rd Annual Symposium on Theory of Computing, STOC, 2001, pp. 104-113] that it is weakly NP-hard to compute the optimal Leader's strategy. For any such network M we efficiently compute the minimum portion @b"M of flow r>0 needed by a Leader to induce M's optimum cost, as well as her optimal strategy. This shows that the optimal Leader's strategy on instances (M,r,@a>=@b"M) is in P. Unfortunately, Stackelberg routing in more general nets can be arbitrarily hard. Roughgarden presented a modification of Braess's Paradox graph, such that no strategy controlling {\'a}r flow can induce ≤1/{\'a} times the optimum cost. However, we show that our main result also applies to any s-t net G. We take care of the Braess's graph explicitly, as a convincing example. Finally, we extend this result to k commodities. A conference version of this paper has appeared in [A. Kaporis, P. Spirakis, The price of optimum in stackelberg games on arbitrary single commodity networks and latency functions, in: 18th annual ACM symposium on Parallelism in Algorithms and Architectures, SPAA, 2006, pp. 19-28]. Some preliminary results have also appeared as technical report in [A.C. Kaporis, E. Politopoulou, P.G. Spirakis, The price of optimum in stackelberg games, in: Electronic Colloquium on Computational Complexity, ECCC, (056), 2005].

Abstract: In this work, we study the combinatorial structure and the
computational complexity of Nash equilibria for a certain game that
models selfish routing over a network consisting of m parallel links. We
assume a collection of n users, each employing a mixed strategy, which
is a probability distribution over links, to control the routing of its own
assigned traffic. In a Nash equilibrium, each user selfishly routes its traffic
on those links that minimize its expected latency cost, given the network
congestion caused by the other users. The social cost of a Nash equilibrium
is the expectation, over all random choices of the users, of the
maximum, over all links, latency through a link.
We embark on a systematic study of several algorithmic problems related
to the computation of Nash equilibria for the selfish routing game we consider.
In a nutshell, these problems relate to deciding the existence of a
Nash equilibrium, constructing a Nash equilibrium with given support
characteristics, constructing the worst Nash equilibrium (the one with
maximum social cost), constructing the best Nash equilibrium (the one
with minimum social cost), or computing the social cost of a (given) Nash
equilibrium. Our work provides a comprehensive collection of efficient algorithms,
hardness results (both as NP-hardness and #P-completeness
results), and structural results for these algorithmic problems. Our results
span and contrast a wide range of assumptions on the syntax of the
Nash equilibria and on the parameters of the system.

Abstract: We study computationally hard combinatorial problems arising from the important engineering question of how to maximize the number of connections that can be simultaneously served in a WDM optical network. In such networks, WDM technology can satisfy a set of connections by computing a route and assigning a wavelength to each connection so that no two connections routed through the same fiber are assigned the same wavelength. Each fiber supports a limited number of w wavelengths and in order to fully exploit the parallelism provided by the technology, one should select a set connections of maximum cardinality which can be satisfied using the available wavelengths. This is known as the maximum routing and path coloring problem (maxRPC).
Our main contribution is a general analysis method for a class of iterative algorithms for a more general coloring problem. A lower bound on the benefit of such an algorithm in terms of the optimal benefit and the number of available wavelengths is given by a benefit-revealing linear program. We apply this method to maxRPC in both undirected and bidirected rings to obtain bounds on the approximability of several algorithms. Our results also apply to the problem maxPC where paths instead of connections are given as part of the input. We also study the profit version of maxPC in rings where each path has a profit and the objective is to satisfy a set of paths of maximum total profit.