Abstract: We present a simple parallel algorithm for the single-source shortest path
problem in planar digraphs with nonnegative real edge weights. The algorithm runs
on the EREW PRAM model of parallel computation in O((n2=+n1&=) log n)
time, performing O(n1+= log n) work for any 0<{\aa}<1/2. The strength of the
algorithm is its simplicity, making it easy to implement and presumable quite
efficient in practice. The algorithm improves upon the work of all previous
parallel algorithms. Our algorithm is based on a region decomposition of the
input graph and uses a well-known parallel implementation of Dijkstra's
algorithm. The logarithmic factor in both the work and the time can be
eliminated by plugging in a less practical, sequential planar shortest path
algorithm together with an improved parallel implementation of Dijkstra's
algorithm.
Abstract: In this work we study the important problem of colouring squares of planargraphs (SQPG). We design and implement two new algorithms that colour in a different way SQPG. We call these algorithms MDsatur and RC. We have also implemented and experimentally evaluated the performance of most of the known approximation colouring algorithms for SQPG [14, 6, 4, 10]. We compare the quality of the colourings achieved by these algorithms, with the colourings obtained by our algorithms and with the results obtained from two well-known greedy colouring heuristics. The heuristics are mainly used for comparison reasons and unexpectedly give very good results. Our algorithm MDsatur outperforms the known algorithms as shown by the extensive experiments we have carried out.
The planar graph instances whose squares are used in our experiments are “non-extremal” graphs obtained by LEDA and hard colourable graph instances that we construct.
The most interesting conclusions of our experimental study are:
1) all colouring algorithms considered here have almost optimal performance on the squares of “non-extremal” planargraphs. 2) all known colouring algorithms especially designed for colouring SQPG, give significantly better results, even on hard to colour graphs, when the vertices of the input graph are randomly named. On the other hand, the performance of our algorithm, MDsatur, becomes worse in this case, however it still has the best performance compared to the others. MDsatur colours the tested graphs with 1.1 OPT colours in most of the cases, even on hard instances, where OPT denotes the number of colours in an optimal colouring. 3) we construct worst case instances for the algorithm of Fotakis el al. [6], which show that its theoretical analysis is tight.
Abstract: We consider classical linear-time planar separator algorithms, determining for a given planar graph a small subset of the nodes whose removal separates the graph into two components of similar size. These algorithms are based upon Planar Separator Theorems, which guarantee separators of size MediaObjects/InlineFigure1.png and remaining components of size less than 2n/3. In this work, we present a comprehensive experimental study of the algorithms applied to a large variety of graphs, where the main goal is to find separators that do not only satisfy upper bounds but also possess other desirable qualities with respect to separator size and component balance. We propose the usage of fundamental cycles, whose size is at most twice the diameter of the graph, as planar separators: For graphs of small diameter the guaranteed bound is better than the MediaObjects/InlineFigure2.png bounds, and it turns out that this simple strategy almost always outperforms the other algorithms, even for graphs with large diameter.
Abstract: We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs
that exploit the particular topology of the input graph. An important feature of our algorithms is that they can
work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the
case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time.
A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting
tradeoff between preprocessing, query, and update times depending on the value of a certain topological
parameter of the graph. Our results can be extended to n-vertex digraphs of genus O.n1ˇ"/ for any " > 0.
Abstract: The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. The Radiocoloring (RC) of a graph G(V,E) is an assignment function Φ: V → IN such that ¦Φ(u)-Φ(v)≥ 2, when u; v are neighbors in G, and ¦Φ(u)-Φ(v)≥1 when the minimum distance of u; v in G is two. The discrete number and the range of frequencies used are called order and span, respectively. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In this paper we prove that the min span RCP is NP-complete for planargraphs. Next, we provide an O(nΔ) time algorithm (¦V¦ = n) which obtains a radiocoloring of a planar graph G that approximates the minimum order within a ratio which tends to 2 (where Δ the maximum degree of G). Finally, we provide a fully polynomial randomized approximation scheme (fpras) for the number of valid radiocolorings of a planar graph G with λ colors, in the case λ ≥ 4λ + 50.
Abstract: The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function View the MathML source such that |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted2, when u,v are neighbors in G, and |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted1 when the distance of u,v in G is two. The number of discrete frequencies and the range of frequencies used are called order and span, respectively. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In this paper we prove that the radiocoloring problem for general graphs is hard to approximate (unless NP=ZPP) within a factor of n1/2-{\aa} (for any View the MathML source), where n is the number of vertices of the graph. However, when restricted to some special cases of graphs, the problem becomes easier. We prove that the min span RCP is NP-complete for planargraphs. Next, we provide an O(n{\"A}) time algorithm (|V|=n) which obtains a radiocoloring of a planar graph G that approximates the minimum order within a ratio which tends to 2 (where {\"A} the maximum degree of G). Finally, we provide a fully polynomial randomized approximation scheme (fpras) for the number of valid radiocolorings of a planar graph G with {\"e} colors, in the case where {\"e}greater-or-equal, slanted4{\"A}+50.
Abstract: The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function View the MathML source such that |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted2, when u,v are neighbors in G, and |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted1 when the distance of u,v in G is two. The number of discrete frequencies and the range of frequencies used are called order and span, respectively. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In this paper we prove that the radiocoloring problem for general graphs is hard to approximate (unless NP=ZPP) within a factor of n1/2-{\aa} (for any View the MathML source), where n is the number of vertices of the graph. However, when restricted to some special cases of graphs, the problem becomes easier. We prove that the min span RCP is NP-complete for planargraphs. Next, we provide an O(n{\"A}) time algorithm (|V|=n) which obtains a radiocoloring of a planar graph G that approximates the minimum order within a ratio which tends to 2 (where {\"A} the maximum degree of G). Finally, we provide a fully polynomial randomized approximation scheme (fpras) for the number of valid radiocolorings of a planar graph G with {\"e} colors, in the case where {\"e}greater-or-equal, slanted4{\"A}+50.
Abstract: The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function View the MathML source such that |{\"E}(u)−{\"E}(v)|greater-or-equal, slanted2, when u,v are neighbors in G, and |{\"E}(u)−{\"E}(v)|greater-or-equal, slanted1 when the distance of u,v in G is two. The discrete number of frequencies used is called order and the range of frequencies used, span. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span (min span RCP) or the order (min order RCP).
In this paper, we deal with an interesting, yet not examined until now, variation of the radiocoloring problem: that of satisfying frequency assignment requests which exhibit some periodic behavior. In this case, the interference graph (modelling interference between transmitters) is some (infinite) periodic graph. Infinite periodic graphs usually model finite networks that accept periodic (in time, e.g. daily) requests for frequency assignment. Alternatively, they can model very large networks produced by the repetition of a small graph.
A periodic graph G is defined by an infinite two-way sequence of repetitions of the same finite graph Gi(Vi,Ei). The edge set of G is derived by connecting the vertices of each iteration Gi to some of the vertices of the next iteration Gi+1, the same for all Gi. We focus on planar periodic graphs, because in many cases real networks are planar and also because of their independent mathematical interest.
We give two basic results:
• We prove that the min span RCP is PSPACE-complete for periodic planargraphs.
• We provide an O(n({\"A}(Gi)+{\'o})) time algorithm (where|Vi|=n, {\"A}(Gi) is the maximum degree of the graph Gi and {\'o} is the number of edges connecting each Gi to Gi+1), which obtains a radiocoloring of a periodic planar graph G that approximates the minimum span within a ratio which tends to View the MathML source as {\"A}(Gi)+{\'o} tends to infinity.
We remark that, any approximation algorithm for the min span RCP of a finite planar graph G, that achieves a span of at most {\'a}{\"A}(G)+constant, for any {\'a} and where {\"A}(G) is the maximum degree of G, can be used as a subroutine in our algorithm to produce an approximation for min span RCP of asymptotic ratio {\'a} for periodic planargraphs.
Abstract: The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. The Radiocoloring (RC) of a graph G(V,E) is an assignment function {\"O}: V → IN such that ∣{\"O}(u) - {\"O}(v)∣ ≥2, when u, v are neighbors in G, and ∣{\"O}(u) - {\"O}(v)∣ ≥1 when the distance of u, v in G is two. The range of frequencies used is called span. Here, we consider the optimization version of the Radiocoloring Problem (RCP) of finding a radiocoloring assignment of minimum span, called min span RCP. In this paper, we deal with a variation of RCP: that of satisfying frequency assignment requests with some periodic behavior. In this case, the interference graph is an (infinite) periodic graph. Infinite periodic graphs model finite networks that accept periodic (in time, e.g. daily) requests for frequency assignment. Alternatively, they may model very large networks produced by the repetition of a small graph. A periodic graph G is defined by an infinite two-way sequence of repetitions of the same finite graph G i (V i ,E i ). The edge set of G is derived by connecting the vertices of each iteration G i to some of the vertices of the next iteration G i +1, the same for all G i . The model of periodic graphs considered here is similar to that of periodic graphs in Orlin [13], Marathe et al [10]. We focus on planar periodic graphs, because in many cases real networks are planar and also because of their independent mathematical interest. We give two basic results: - We prove that the min span RCP is PSPACE-complete for periodic planargraphs. - We provide an O(n({\"A}(G i ) + {\'o})) time algorithm, (where ∣V i ∣ = n, {\"A}(G i ) is the maximum degree of the graph G i and {\'o} is the number of edges connecting each G i to G i +1), which obtains a radiocoloring of a periodic planar graph G that approximates the minimum span within a ratio which tends to 2 as {\"A}(Gi) + {\'o} tends to infinity.
Abstract: We consider the problem of preprocessing an n-vertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give parallel algorithms for the EREW PRAM model of computation that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in O({\'a}(n)) time using a single processor, after a preprocessing of O(log2n) time and O(n) work, where {\'a}(n) is the inverse of Ackermann's function. The class of constant treewidth graphs contains outerplanargraphs and series-parallel graphs, among others. To the best of our knowledge, these are the first parallel algorithms which achieve these bounds for any class of graphs except trees. We also give a dynamic algorithm which, after a change in an edge weight, updates our data structures in O(log n) time using O(n{\^a}) work, for any constant 0 < {\^a} < 1. Moreover, we give an algorithm of independent interest: computing a shortest path tree, or finding a negative cycle in O(log2n) time using O(n) work.