Abstract: The Frequency Assignment Problem (FAP) in radionetworks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. The Radiocoloring (RC) of a graph G(V,E) is an assignment function Φ: V → IN such that ¦Φ(u)-Φ(v)≥ 2, when u; v are neighbors in G, and ¦Φ(u)-Φ(v)≥1 when the minimum distance of u; v in G is two. The discrete number and the range of frequencies used are called order and span, respectively. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In this paper we prove that the min span RCP is NP-complete for planar graphs. Next, we provide an O(nΔ) time algorithm (¦V¦ = n) which obtains a radiocoloring of a planar graph G that approximates the minimum order within a ratio which tends to 2 (where Δ the maximum degree of G). Finally, we provide a fully polynomial randomized approximation scheme (fpras) for the number of valid radiocolorings of a planar graph G with λ colors, in the case λ ≥ 4λ + 50.
Abstract: In this paper we study the problem of assigning transmission ranges to the nodes of a multihop
packet radio network so as to minimize the total power consumed under the constraint
that adequate power is provided to the nodes to ensure that the network is strongly connected
(i.e., each node can communicate along some path in the network to every other node). Such
assignment of transmission ranges is called complete. We also consider the problem of achieving
strongly connected bounded diameter networks.
For the case of n + 1 colinear points at unit distance apart (the unit chain) we give a tight
asymptotic bound for the minimum cost of a range assignment of diameter h when h is a xed
constant and when h>(1 + ) log n, for some constant > 0. When the distances between the
colinear points are arbitrary, we give an O(n4) time dynamic programming algorithm for nding
a minimum cost complete range assignment.
For points in three dimensions we show that the problem of deciding whether a complete
range assignment of a given cost exists, is NP-hard. For the same problem we give an O(n2)
time approximation algorithm which provides a complete range assignment with cost within a
factor of two of the minimum. The complexity of this problem in two dimensions remains open,
while the approximation algorithm works in this case as well.
Abstract: The Frequency Assignment Problem (FAP) in radionetworks is the problem of assigning frequencies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function View the MathML source such that |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted2, when u,v are neighbors in G, and |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted1 when the distance of u,v in G is two. The number of discrete frequencies and the range of frequencies used are called order and span, respectively. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In this paper we prove that the radiocoloring problem for general graphs is hard to approximate (unless NP=ZPP) within a factor of n1/2-{\aa} (for any View the MathML source), where n is the number of vertices of the graph. However, when restricted to some special cases of graphs, the problem becomes easier. We prove that the min span RCP is NP-complete for planar graphs. Next, we provide an O(n{\"A}) time algorithm (|V|=n) which obtains a radiocoloring of a planar graph G that approximates the minimum order within a ratio which tends to 2 (where {\"A} the maximum degree of G). Finally, we provide a fully polynomial randomized approximation scheme (fpras) for the number of valid radiocolorings of a planar graph G with {\"e} colors, in the case where {\"e}greater-or-equal, slanted4{\"A}+50.
Abstract: The Frequency Assignment Problem (FAP) in radionetworks is the problem of assigning frequencies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function View the MathML source such that |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted2, when u,v are neighbors in G, and |{\"O}(u)-{\"O}(v)|greater-or-equal, slanted1 when the distance of u,v in G is two. The number of discrete frequencies and the range of frequencies used are called order and span, respectively. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In this paper we prove that the radiocoloring problem for general graphs is hard to approximate (unless NP=ZPP) within a factor of n1/2-{\aa} (for any View the MathML source), where n is the number of vertices of the graph. However, when restricted to some special cases of graphs, the problem becomes easier. We prove that the min span RCP is NP-complete for planar graphs. Next, we provide an O(n{\"A}) time algorithm (|V|=n) which obtains a radiocoloring of a planar graph G that approximates the minimum order within a ratio which tends to 2 (where {\"A} the maximum degree of G). Finally, we provide a fully polynomial randomized approximation scheme (fpras) for the number of valid radiocolorings of a planar graph G with {\"e} colors, in the case where {\"e}greater-or-equal, slanted4{\"A}+50.
Abstract: The Frequency Assignment Problem (FAP) in radionetworks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function View the MathML source such that |{\"E}(u)−{\"E}(v)|greater-or-equal, slanted2, when u,v are neighbors in G, and |{\"E}(u)−{\"E}(v)|greater-or-equal, slanted1 when the distance of u,v in G is two. The discrete number of frequencies used is called order and the range of frequencies used, span. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span (min span RCP) or the order (min order RCP).
In this paper, we deal with an interesting, yet not examined until now, variation of the radiocoloring problem: that of satisfying frequency assignment requests which exhibit some periodic behavior. In this case, the interference graph (modelling interference between transmitters) is some (infinite) periodic graph. Infinite periodic graphs usually model finite networks that accept periodic (in time, e.g. daily) requests for frequency assignment. Alternatively, they can model very large networks produced by the repetition of a small graph.
A periodic graph G is defined by an infinite two-way sequence of repetitions of the same finite graph Gi(Vi,Ei). The edge set of G is derived by connecting the vertices of each iteration Gi to some of the vertices of the next iteration Gi+1, the same for all Gi. We focus on planar periodic graphs, because in many cases real networks are planar and also because of their independent mathematical interest.
We give two basic results:
• We prove that the min span RCP is PSPACE-complete for periodic planar graphs.
• We provide an O(n({\"A}(Gi)+{\'o})) time algorithm (where|Vi|=n, {\"A}(Gi) is the maximum degree of the graph Gi and {\'o} is the number of edges connecting each Gi to Gi+1), which obtains a radiocoloring of a periodic planar graph G that approximates the minimum span within a ratio which tends to View the MathML source as {\"A}(Gi)+{\'o} tends to infinity.
We remark that, any approximation algorithm for the min span RCP of a finite planar graph G, that achieves a span of at most {\'a}{\"A}(G)+constant, for any {\'a} and where {\"A}(G) is the maximum degree of G, can be used as a subroutine in our algorithm to produce an approximation for min span RCP of asymptotic ratio {\'a} for periodic planar graphs.
Abstract: The Frequency Assignment Problem (FAP) in radionetworks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. The Radiocoloring (RC) of a graph G(V,E) is an assignment function {\"O}: V → IN such that ∣{\"O}(u) - {\"O}(v)∣ ≥2, when u, v are neighbors in G, and ∣{\"O}(u) - {\"O}(v)∣ ≥1 when the distance of u, v in G is two. The range of frequencies used is called span. Here, we consider the optimization version of the Radiocoloring Problem (RCP) of finding a radiocoloring assignment of minimum span, called min span RCP. In this paper, we deal with a variation of RCP: that of satisfying frequency assignment requests with some periodic behavior. In this case, the interference graph is an (infinite) periodic graph. Infinite periodic graphs model finite networks that accept periodic (in time, e.g. daily) requests for frequency assignment. Alternatively, they may model very large networks produced by the repetition of a small graph. A periodic graph G is defined by an infinite two-way sequence of repetitions of the same finite graph G i (V i ,E i ). The edge set of G is derived by connecting the vertices of each iteration G i to some of the vertices of the next iteration G i +1, the same for all G i . The model of periodic graphs considered here is similar to that of periodic graphs in Orlin [13], Marathe et al [10]. We focus on planar periodic graphs, because in many cases real networks are planar and also because of their independent mathematical interest. We give two basic results: - We prove that the min span RCP is PSPACE-complete for periodic planar graphs. - We provide an O(n({\"A}(G i ) + {\'o})) time algorithm, (where ∣V i ∣ = n, {\"A}(G i ) is the maximum degree of the graph G i and {\'o} is the number of edges connecting each G i to G i +1), which obtains a radiocoloring of a periodic planar graph G that approximates the minimum span within a ratio which tends to 2 as {\"A}(Gi) + {\'o} tends to infinity.