Tools and Technologies for eParticipation and eVoting, Trust and Security: provisions and instruments, eDemocracy and eParticipation Challenges, Risk Assessment, Cryptographic Protocol, Security Architecture

Abstract: Based on our experience in designing, building and maintaining an information system for supporting a large scale electronic lottery, we present in this paper a unified approach to the design and implementation of electronic lotteries with the focus on pragmatic trust establishment. This approach follows closely the methodologies commonly employed in the development of general information systems. However, central to the proposed approach is the decomposition of a security critical system into layers containing basic trust components so as to facilitate the management of trust, first along the layers, and then as we move from layer to layer. We believe that such a structured approach, based on layers and trust components, can help designers of security critical applications produce demonstrably robust and verifiable systems that people will not hesitate to use.

Abstract: Large-scale sensor networks, monitoring an environment at close range with high spatial and temporal resolutions are expected to play an important role in various applications, e.g., assessing the ``health'' of machines; environmental, medical, food-safety, and habitat monitoring; inventory control, building automation, etc. Ensuring the security of these complex and yet resource-constrained systems has emerged as one of the most pressing challenges for researchers. In this paper (i) we present the major threats and some characteristic countermeasures, (ii) we propose a way to classify existing systems for intrusion detection in wireless sensor networks and (iii) we present a new approach for decentralized energy efficient intrusion detection that can be used to improve security from both external and internal adversaries.

Abstract: Many of the network security protocols employed today utilize symmetric block ciphers (DES, AES and CAST etc). The majority of the symmetric block ciphers implement the crucial substitution operation using look up tables, called substitution boxes. These structures should be highly nonlinear and have bit dispersal, i.e. avalanche, properties in order to render the cipher with resistant to cryptanalysis attempts, such as linear and differential cryptanalysis. Highly secure substitution boxes can be constructed using particular Boolean functions as components that have certain mathematical properties which enhance the robustness of the whole cryptoalgorithm. However, enforcing these properties on SBoxes is a highly computationally intensive task. In this paper, we present a distributed algorithm and its implementation on a computing cluster that accelerates the construction of secure substitution boxes with good security properties. It is fully parametric since it can employ any class of Boolean functions with algorithmically definable properties and can construct SBoxes of arbitrary sizes. We demonstrate the efficiency of the distributed algorithm implementation compared to its sequential counterpart, in a number of experiments.

Abstract: eVoting is considered to be one of the most challenging domains of modern eGovernment and one of the main vehicles for increasing eParticipation among citizens. One of the main obstacles for its wide adoptionis the reluctance of citizens to participate in electronic voting procedures. This reluctance can be partially attributed to the low penetration of technology among citizens. However, the main reason behind this reluctance is the lack of trust which stems from the belief of citizens that systems implementing an eVoting process will violate their privacy. The departure point of this approach is that the emergence of such a belief can be considerably facilitated by designing and building systems in a way that evidence about the system’s properties is produced during the design process. In this way, the designers can demonstrate the respect in privacy using this evidence that can be understood and checked by the specialist and the informed layman. These tools and models should provide sufficient evidence that the target system handles privacy concerns and requirements that can remove enough of the fears towards eVoting. This paper presents the efforts of the authors‘ organization, the Computer Technology Institute and Press “Diophantus” (CTI), towards the design and implementation of an eVoting system, called PNYKA, with demonstrable security properties. This system was based on a trust-centered engineering approach for building general security critical systems. The authors‘ approach is pragmatic rather than theoretical in that it sidesteps the controversy that besets the nature of trust in information systems and starts with a working definition of trust as people’s positive attitude towards a system that transparently and demonstrably performs its operations, respecting their privacy. The authors also discuss the social side of eVoting, i.e. how one can help boost its acceptance by large social groups targeting the whole population of the country. The authors view eVoting as an innovation that must be diffused to a population and then employ a theoretical model that studies diffusion of innovation in social network, delineating structural properties of the network that help diffuse the innovation fast. Furthermore, the authors explain how CTI’s current situation empowers CTI to realize its vision to implement a privacy preserving, discussion and public consultation forum in Greece. This forum will link, together, all Greek educational institutes in order to provide a privacy preserving discussion and opinion gathering tool useful in decision making within the Greek educational system.

Abstract: Consider a network vulnerable to viral infection. The system security software can guarantee
safety only to a limited part of the network. Such limitations result from economy costs or processing
costs. The problem raised is to which part of the network the security software should
be installed, so that to secure as much as possible the network. We model this practical network
scenario as a non-cooperative multi-player game on a graph, with two kinds of players, a set
of attackers and a protector player, representing the viruses and the system security software,
respectively. Each attacker player chooses a node of the graph (or a set of them, via a probability
distribution) to infect. The protector player chooses independently, in a basic case of the
problem, a simple path or an edge of the graph (or a set of them, via a probability distribution)
and cleans this part of the network from attackers. Each attacker wishes to maximize the probability
of escaping its cleaning by the protector. In contrast, the protector aims at maximizing
the expected number of cleaned attackers. We call the two games obtained from the two basic
cases considered, as the Path and the Edge model, respectively. For these two games, we are
interested in the associated Nash equilibria, where no network entity can unilaterally improve
its local objective. We obtain the following results:
• The problem of existence of a pure Nash equilibrium is NP-complete for the Path model.
This opposed to that, no instance of the Edge model possesses a pure Nash equilibrium,
proved in [7].
• In [7] a characterization of mixed Nash equilibria for the Edge model is provided. However,
that characterization only implies an exponential time algorithm for the general case.
Here, combining it with clever exploration of properties of various practical families of
graphs, we compute, in polynomial time, mixed Nash equilibria on corresponding graph
instances. These graph families include, regular graphs, graphs that can be decomposed, in
polynomially time, into vertex disjoint r-regular subgraphs, graphs with perfect matchings
and trees.
• We utilize the notion of social cost [6] for measuring system performance on such scenario;
here is defined to be the utility of the protector. We prove that the corresponding Price of
Anarchy in any mixed Nash equilibria of the game is upper and lower bounded by a linear
function of the number of vertices of the graph.

Abstract: Consider a network vulnerable to viral infection, where the security software can guarantee safety only to a limited part of it. We model this practical network scenario as a non-cooperative multi-player game on a graph, with two kinds of players, a set of attackers and a protector player, representing the viruses and the system security software, respectively. We are interested in the associated Nash equilibria, where no network entity can unilaterally improve its local objective. We obtain the following results: for certain families of graphs, mixed Nash equilibria can be computed in polynomially time. These families include, among others, regular graphs, graphs with perfect matchings and trees. The corresponding price of anarchy for any mixed Nash equilibria of the game is upper and lower bounded by a linear function of the number of vertices of the graph. (We define the price of anarchy to reflect the utility of the protector). Finally, we introduce a generalised version of the game. We show that the existence problem of pure Nash equilibria here is NP complete.

Abstract: We describe the design and implementation
of a secure and robust architectural data management
model suitable for cultural environments. Usage and exploitation
of the World Wide Web is a critical requirement
for a series of administrative tasks such as collecting, managing
and distributing valuable cultural and artistic information.
This requirement introduces a great number of
Internet threats for cultural organizations that may cause
huge data and/or financial losses, harm their reputation
and public acceptance as well as people’s trust on them.
Our model addresses a list of fundamental operational
and security requirements. It utilizes a number of cryptographic
primitives and techniques that provide data safety
and secure user interaction on especially demanding online
collaboration environments. We provide a reference
implementation of our architectural model and discuss
the technical issues. It is designed as a standalone solution
but it can be flexibly adapted in broader management
infrastructures.

Abstract: eVoting is a challenging approach for increasing eParticipation. However, lack of citizens¢ trust seems to be a main obstacle that hinders its successful realization. In this paper we propose a trust-centered engineering approach for building eVoting systems that people can trust, based on transparent design and implementation phases. The approach is based on three components: the decomposition of eVoting systems into “layers of trust” for reducing the complexity of managing trust issues in smaller manageable layers, the application of a risk analysis methodology able to identify and document security critical aspects of the eVoting system, and a cryptographically secure eVoting protocol. Our approach is pragmatic rather than theoretical in the sense that it sidesteps the controversy that besets the nature of trust in information systems and starts with a working definition of trust as people¢s positive attitude towards a system that performs its operations transparently.

Abstract: Designing wireless sensor networks is inherently complex; many aspects such as energy efficiency, limited resources, decentralized collaboration, fault tolerance have to be tackled. To be effective and to produce applicable results, fundamental research has to be tested, at least as a proof-of-concept, in large scale environments, so as to assess the feasibility of the new concepts, verify their large scale effects (not only at technological level, but also as for their foreseeable implications on users, society and economy) and derive further requirements, orientations and inputs for the research. In this paper we focus on the problems of interconnecting existing testbed environments via the Internet and providing a virtual unifying laboratory that will support academia, research centers and industry in their research on networks and services. In such a facility important issues of trust, security, confidentiality and integrity of data may arise especially for commercial (or not) organizations. In this paper we investigate such issues and present the design of a secure and robust architectural model for interconnecting testbeds of wireless sensor networks.

Abstract: We study the problem of secure routing in wireless sensor networks where the sensors and the sink can move during the execution of remote monitoring applications and communication is not necessarily directed towards the sink. We present a new routing protocol that builds upon a collection of mechanisms so that the integrity and confidentiality of the information reported to the controlling authorities is secured. The mechanisms are simple to implement, rely only on local information and require O(1) storage per sensor. The protocol adapts to mobility and security challenges that may arise throughout the execution of the application. We take special care for wireless sensor networks that monitor dynamically changing environments and applications that require its operation for extended periods of time. APSR can detect when the current network conditions are about to change and becomes ready for adaption to the new conditions. We demonstrate how to deal with inside and outside attacks even when the network is adapting to internal and/or external events.

Abstract: In this paper, we propose simple protocols for enabling two communicating agents that may have never met before to extract common knowledge out of any initial knowledge that each of them possesses. The initial knowledge from which the agents start, may even be independent of each other, implying that the two agents need not have had previous access to common information sources. In addition, the common knowledge extracted upon the termination of the protocols depends, in a fair way, on the (possibly independent) information items initially known, separately, by the two agents. It is fair in the sense that there is a negotiation between the two agents instead of one agent forcing the other to conform to its own knowledge. These protocols, may be extended in order to support security applications where the establishment of a common knowledge is required. Moreover, the implementation of the protocols leads to reasonably small code that can also fit within resource limited devices involved in any communication network while, at the same time, it is efficient as simulation results demonstrate.

Abstract: Wireless sensor networks are comprised of a vast number of
ultra-small autonomous computing, communication and sensing devices,
with restricted energy and computing capabilities, that co-operate
to accomplish a large sensing task. Such networks can be very useful
in practice, e.g.~in the local monitoring of ambient conditions and
reporting them to a control center. In this paper we propose a
distributed group key establishment protocol that uses mobile agents
(software) and is particularly suitable for energy constrained,
dynamically evolving ad-hoc networks. Our approach totally avoids
the construction and the maintenance of a distributed structure that
reflects the topology of the network. Moreover, it trades-off
complex message exchanges by performing some amount of additional
local computations in order to be applicable at dense and dynamic
sensor networks. The extra computations are simple for the devices
to implement and are evenly distributed across the participants of
the network leading to good energy balance. We evaluate the
performance of our protocol in a simulated environment and compare
our results with existing group key establishment protocols. The
security of the protocol is based on the Diffie-Hellman problem and
we used in our experiments its elliptic curve analog. Our findings
basically indicate the feasibility of implementing our protocol in
real sensor network devices and highlight the advantages and
disadvantages of each approach given the available technology and
the corresponding efficiency (energy, time) criteria.

Abstract: A new model for intrusion and its propagation through various attack
schemes in networks is considered. The model is characterized by the number of
network nodes n, and two parameters f and g. Parameter f represents the probability
of failure of an attack to a node and is a gross measure of the level of security of
the attacked system and perhaps of the intruder¢s skills; g represents a limit on
the number of attacks that the intrusion software can ever try, due to the danger
of being discovered, when it issues them from a particular (broken) network node.
The success of the attack scheme is characterized by two factors: the number of
nodes captured (the spread factor) and the number of virtual links that a defense
mechanism has to trace from any node where the attack is active to the origin of
the intrusion (the traceability factor). The goal of an intruder is to maximize both
factors. In our model we present four different ways (attack schemes) by which an
intruder can organize his attacks. Using analytic and experimental methods, we first
show that for any 0 < f < 1, there exists a constant g for which any of our attack
schemes can achieve a {\`E}(n) spread and traceability factor with high probability,
given sufficient propagation time. We also show for three of our attack schemes
that the spread and the traceability factors are, with high probability, linearly related
during the whole duration of the attack propagation. This implies that it will not be
easy for a detection mechanism to trace the origin of the intrusion, since it will have
to trace a number of links proportional to the nodes captured.

Abstract: A new model for intrusion and its propagation through various attack
schemes in networks is considered. The model is characterized by the number of
network nodes n, and two parameters f and g. Parameter f represents the probability
of failure of an attack to a node and is a gross measure of the level of security of
the attacked system and perhaps of the intruder¢s skills; g represents a limit on
the number of attacks that the intrusion software can ever try, due to the danger
of being discovered, when it issues them from a particular (broken) network node.
The success of the attack scheme is characterized by two factors: the number of
nodes captured (the spread factor) and the number of virtual links that a defense
mechanism has to trace from any node where the attack is active to the origin of
the intrusion (the traceability factor). The goal of an intruder is to maximize both
factors. In our model we present four different ways (attack schemes) by which an
intruder can organize his attacks. Using analytic and experimental methods, we first
show that for any 0 < f < 1, there exists a constant g for which any of our attack
schemes can achieve a (n) spread and traceability factor with high probability,
given sufficient propagation time. We also show for three of our attack schemes
that the spread and the traceability factors are, with high probability, linearly related
during the whole duration of the attack propagation. This implies that it will not be
easy for a detection mechanism to trace the origin of the intrusion, since it will have
to trace a number of links proportional to the nodes captured.

Abstract: We describe the design and implementation of secure and robust protocol and system for a national electronic lottery. Electronic lotteries at a national level are a viable cost effective alternative to mechanical ones when there is a business need to support many types of rdquogames of chancerdquo and to allow increased drawing frequency. Electronic lotteries are, in fact, extremely high risk financial application: If one discovers a way to predict or otherwise claim the winning numbers (even once) the result is huge financial damages. Moreover, the e-lottery process is complex, which increases the possibility of fraud or costly accidental failures. In addition, a national lottery must adhere to auditability and (regulatory) fairness requirements regarding its drawings. Our mechanism, which we believe is the first one of its kind to be described in the literature, builds upon a number of cryptographic primitives that ensure the unpredictability of the winning numbers, the prevention of their premature leakages and prevention of fraud. We also provide measures for auditability, fairness, and trustworthiness of the process. Besides cryptography, we incorporate security mechanisms that eliminate various risks along the entire process. Our system which was commissioned by a national organization, was implemented in the field and has been operational and active for a while, now.

Abstract: As the Internet of Things (IOT) arises, the use of
low-end devices on a daily basis increases. The wireless nature
of communication that these devices provide raises security and
privacy issues. For protecting a user’s privacy, cryptography
offers the tool of zero knowledge proofs (ZKP). In this
paper, we study well-established ZKP protocols based on the
discrete logarithm problem and we adapt them to the Elliptic
Curve Cryptography (ECC) setting, which consists an ideal
candidate for embedded implementations. Then, we implement
the proposed protocols on Wiselib, a generic and open source
algorithmic library. For the first time, we present a thorough
evaluation of the protocols on two popular hardware platforms
equipped with low end microcontrollers (Jennic JN5139, TI
MSP430) and 802.15.4 RF transceivers, in terms of code size,
execution time, message size and energy requirements. This
work’s results can be used from developers who wish to achieve
certain levels of privacy in their applications.

Abstract: In this paper, we discuss the conceptual problems arising from security issues for small artefacts. We propose two frameworks for security of small artefacts and present some preliminary results for the two frameworks

Abstract: We consider a variant of the Complex Multiplication (CM)
method for constructing elliptic curves (ECs) of prime order with additional
security properties. Our variant uses Weber polynomials whose
discriminant D is congruent to 3 (mod 8), and is based on a new transformation
for converting roots of Weber polynomials to their Hilbert
counterparts. We also present a new theoretical estimate of the bit precision
required for the construction of the Weber polynomials for these
values of D. We conduct a comparative experimental study investigating
the time and bit precision of using Weber polynomials against the (typical)
use of Hilbert polynomials. We further investigate the time efficiency
of the new CM variant under four different implementations of a crucial
step of the variant and demonstrate the superiority of two of them.

Abstract: In many cryptographic applications it is necessary to generate
elliptic curves (ECs) with certain security properties. These curves
are commonly constructed using the Complex Multiplication method
which typically uses the roots of Hilbert or Weber polynomials. The former
generate the EC directly, but have high computational demands,
while the latter are faster to construct but they do not lead, directly, to
the desired EC. In this paper we present in a simple and unifying manner
a complete set of transformations of the roots of a Weber polynomial to
the roots of its corresponding Hilbert polynomial for all discriminant values
on which they are defined. Moreover, we prove a theoretical estimate
of the precision required for the computation of Weber polynomials. Finally,
we experimentally assess the computational efficiency of theWeber
polynomials along with their precision requirements for various discriminant
values and compare the results with the theoretical estimates. Our
experimental results may be used as a guide for the selection of the most
efficient curves in applications residing in resource limited devices such as
smart cards that support secure and efficient Public Key Infrastructure
(PKI) services.

Abstract: Elliptic Curve Cryptography (ECC) is one of the
most promising alternatives to conventional public
key cryptography, such as RSA and ElGamal, since
it employs keys of smaller sizes for the same level
of cryptographic strength. Smaller key sizes imply
smaller hardware units for performing the arithmetic
operations required by cryptographic protocols and,
thus, ECC is an ideal candidate for implementation
in embedded systems where the major computational
resources (speed and storage) are limited.
In this paper we present a port, written in ANSI C
for maximum portability, of an open source ECCbased
cryptographic library (ECC-LIB) to ATMEL¢s
AT76C520 802.11 WLAN Access Point. One of the
major features of this port, not found in similar ports,
is that it supports Complex Multiplication (CM) for
the construction of Elliptic Curves with good security
properties. We present some experimental results that
demonstrate that the port is efficient and can lead to generic embedded systems with robust ECC-based
cryptographic protocols using cryptographically strong
ECCs generated with CM. As an application of the
ported library, an EC Diffie-Hellman key exchange
protocol is developed as an alternative of the 4-way
key handshake protocol of the 802.11 protocol.

Abstract: Embedded computing devices dominate our everyday activities, from cell phones to wireless sensors that collect and process data for various applications. Although desktop and high-end server security seems to be under control by the use of current security technology, securing the low-end embedded computing systems is a difficult long-term problem. This is mainly due to the fact that the embedded systems are constrained by their operational environment and the limited resources they are equipped with. Recent research activities focus on the deployment of lightweight cryptographic algorithms and security protocols that are well suited to the limited resources of low-end embedded systems. Elliptic Curve Cryptography (ECC) offers an interesting alternative to the classical public key cryptography for embedded systems (e.g., RSA and ElGamal), since it uses smaller key sizes for achieving the same security level, thus making ECC an attractive and efficient alternative for deployment in embedded systems. In this chapter, the processing requirements and architectures for secure network access, communication functions, storage, and high availability of embedded devices are discussed. In addition, ECC-based state-of-the-art lightweight cryptographic primitives for the deployment of security protocols in embedded systems that fulfill the requirements are presented.

Abstract: The Greek School Network (GSN) is a closed educational network that offers advanced
telematic and networking services to all primary/secondary education schools and
educational administration offices in Greece. The primary objective of GSN is to provide a network infrastructure for the interconnection of school PC laboratories so that modern educational methods and pedagogical models can be used in the school community securely and effectively. GSN has scaled in size, reached maturity, and is currently delivering a wide range of network and telematic services to students and educators. Being the second largest
communications network nationwide, GSN is exposed to all kinds of security threats and, due to its educational hypostasis, naive user behaviour. The current paper presents an evaluation of security management solutions for the enforcement of policies, practices, and user protection methodologies proven viable within the GSN environment, as indicated by statistics and metrics on the use of the related services. The paper reaches the conclusion that GSN security services constitute a sound framework that can successfully cover the needs of
the school community.

Abstract: Prompt availability of critical information to the right people is the main factor for the management of any
emergency situation. However, despite the numerous investments in the domain of public safety and
security, recent events demonstrate that, both in Europe and US, this is still an open issue.

Abstract: We consider a security problem on a distributed network.
We assume a network whose nodes are vulnerable to infection
by threats (e.g. viruses), the attackers. A system security
software, the defender, is available in the system. However,
due to the network¢s size, economic and performance reasons,
it is capable to provide safety, i.e. clean nodes from
the possible presence of attackers, only to a limited part of
it. The objective of the defender is to place itself in such a
way as to maximize the number of attackers caught, while
each attacker aims not to be caught.
In [7], a basic case of this problem was modeled as a
non-cooperative game, called the Edge model. There, the
defender could protect a single link of the network. Here,
we consider a more general case of the problem where the
defender is able to scan and protect a set of k links of the
network, which we call the Tuple model. It is natural to expect
that this increased power of the defender should result
in a better quality of protection for the network. Ideally,
this would be achieved at little expense on the existence and
complexity of Nash equilibria (profiles where no entity can
improve its local objective unilaterally by switching placements
on the network).
In this paper we study pure and mixed Nash equilibria
in the model. In particular, we propose algorithms for computing
such equilibria in polynomial time and we provide a
polynomial-time transformation of a special class of Nash
equilibria, called matching equilibria, between the Edge
model and the Tuple model, and vice versa. Finally, we
establish that the increased power of the defender results in
higher-quality protection of the network.

Abstract: Consider a network vulnerable to security attacks and equipped with defense mechanisms. How much is the loss in the provided security guarantees due to the selfish nature of attacks and defenses? The Price of Defense was recently introduced in [7] as a worst-case measure, over all associated Nash equilibria, of this loss. In the particular strategic game considered in [7], there are two classes of confronting randomized players on a graph G(V,E): v attackers, each choosing vertices and wishing to minimize the probability of being caught, and a single defender, who chooses edges and gains the expected number of attackers it catches. In this work, we continue the study of the Price of Defense. We obtain the following results: - The Price of Defense is at least |V| 2; this implies that the Perfect Matching Nash equilibria considered in [7] are optimal with respect to the Price of Defense, so that the lower bound is tight. - We define Defense-Optimal graphs as those admitting a Nash equilibrium that attains the (tight) lower bound of |V| 2. We obtain: › A graph is Defense-Optimal if and only if it has a Fractional Perfect Matching. Since graphs with a Fractional Perfect Matching are recognizable in polynomial time, the same holds for Defense-Optimal graphs. › We identify a very simple graph that is Defense-Optimal but has no Perfect Matching Nash equilibrium. - Inspired by the established connection between Nash equilibria and Fractional Perfect Matchings, we transfer a known bivaluedness result about Fractional Matchings to a certain class of Nash equilibria. So, the connection to Fractional Graph Theory may be the key to revealing the combinatorial structure of Nash equilibria for our network security game.