Abstract: In this paper, a novel configuration is proposed for
the implementation of an almost all-optical switch architecture
called the scheduling switch, which when combined with appropriate
wait-for-reservation or tell-and-go connection and flow
control protocols provides lossless communication for traffic
that satisfies certain smoothness properties. An all-optical 2 2
exchange/bypass (E/B) switch based on the nonlinear operation
of a semiconductor optical amplifier (SOA) is considered as the
basic building block of the scheduling switch as opposed to active
SOA-based space switches that use injection current to switch
between ON and OFF states. The experimental demonstration of
the optically addressable 2 2 E/B, which is summarized for
10–Gb/s data packets as well as synchronous digital hierarchy
(SDH)/STM-64 data frames, ensures the feasibility of the proposed
configuration at high speeds, with low switching energy and low
losses during the scheduling process. In addition, it provides
reduction of the number of required components for the construction
of the scheduling switch, which is calculated to be 50% in the
number of active elements and 33% in the fiber length.

Abstract: Wireless Sensor Networks (WSNs) constitute a recent and promising new
technology that is widely applicable. Due to the applicability of this
technology and its obvious importance for the modern distributed
computational world, the formal scientific foundation of its inherent laws
becomes essential. As a result, many new computational models for WSNs
have been proposed. Population Protocols (PPs) are a special category of
such systems. These are mainly identified by three distinctive
characteristics: the sensor nodes (agents) move passively, that is, they
cannot control the underlying mobility pattern, the available memory to
each agent is restricted, and the agents interact in pairs. It has been
proven that a predicate is computable by the PP model iff it is
semilinear. The class of semilinear predicates is a fairly small class. In
this work, our basic goal is to enhance the PP model in order to improve
the computational power. We first make the assumption that not only the
nodes but also the edges of the communication graph can store restricted
states. In a complete graph of n nodes it is like having added O(n2)
additional memory cells which are only read and written by the endpoints
of the corresponding edge. We prove that the new model, called Mediated
Population Protocol model, can operate as a distributed nondeterministic
Turing machine (TM) that uses all the available memory. The only
difference from a usual TM is that this one computes only symmetric
languages. More formally, we establish that a predicate is computable by
the new model iff it is symmetric and belongs to NSPACE(n2). Moreover, we
study the ability of the new model to decide graph languages (for general
graphs). The next step is to ignore the states of the edges and provide
another enhancement straight away from the PP model. The assumption now is
that the agents are multitape TMs equipped with infinite memory, that can
perform internal computation and interact with other agents, and we define
space-bounded computations. We call this the Passively mobile Machines
model. We prove that if each agent uses at most f(n) memory for f(n)={\`U}(log
n) then a predicate is computable iff it is symmetric and belongs to
NSPACE(nf(n)). We also show that this is not the case for f(n)=o(log n).
Based on these, we show that for f(n)={\`U}(log n) there exists a spacehierarchy like the one for classical symmetric TMs. We also show that the
latter is not the case for f(n)=o(loglog n), since here the corresponding
class collapses in the class of semilinear predicates and finally that for
f(n)={\`U}(loglog n) the class becomes a proper superset of semilinear
predicates. We leave open the problem of characterizing the classes for
f(n)={\`U}(loglog n) and f(n)=o(log n).

Abstract: We propose a new theoretical model for passively mobile Wireless Sensor Networks, called PM, standing for Passively mobile Machines. The main modification w.r.t. the Population Protocol model [Angluin et al. 2006] is that agents now, instead of being automata, are Turing Machines. We provide general definitions for unbounded memories, but we are mainly interested in computations upper-bounded by plausible space limitations. However, we prove that our results hold for more general cases. We focus on \emph{complete interaction graphs} and define the complexity classes PMSPACE(f(n)) parametrically, consisting of all predicates that are stably computable by some PM protocol that uses O(f(n)) memory in each agent. We provide a protocol that generates unique identifiers from scratch only by using O(log n) memory, and use it to provide an exact characterization of the classes PMSPACE(f(n)) when f(n) = Ω(log n): they are precisely the classes of all symmetric predicates in NSPACE(nf(n)). As a consequence, we obtain a spacehierarchy of the PM model when the memory bounds are Ω(log n). We next explore the computability of the PM model when the protocols use o(loglog n) space per machine and prove that SEM = PMSPACE(f(n)) when f(n) = o(loglog n), where SEM denotes the class of the semilinear predicates. Finally, we establish that the minimal space requirement for the computation of non-semilinear predicates is O(log log n).

Abstract: We propose a new theoretical model for passively mobile Wireless Sensor Networks, called PM, standing for Passively mobile Machines. The main modification w.r.t. the Population Protocol model [Angluin et al. 2006] is that the agents now, instead of being automata, are Turing Machines. We provide general definitions for unbounded memories, but we are mainly interested in computations upper-bounded by plausible space limitations. However, we prove that our results hold for more general cases. We focus on complete interaction graphs and define the complexity classes PMSPACE(f(n)) parametrically, consisting of all predicates that are stably computable by some PM protocol that uses O(f(n)) memory in each agent. We provide a protocol that generates unique identifiers from scratch only by using O(log n) memory, and use it to provide an exact characterization of the classes PMSPACE(f(n)) when f(n)=Omega(log n): they are precisely the classes of all symmetric predicates in NSPACE(nf(n)). As a consequence, we obtain a spacehierarchy of the PM model when the memory bounds are Omega(log n). Finally, we establish that the minimal space requirement for the computation of non-semilinear predicates is O(log log n).