Abstract: In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game.
We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameter c. We validate a variant (NLS) of the Largest Latency First (LLF) Leaderrsquos strategy on tuples with PoA ge c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion agr of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leaderrsquos portion agr0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding agr0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.

Abstract: Let M be a single s-t network of parallel links with load dependent latency functions shared by an infinite number of selfish users. This may yield a Nash equilibrium with unbounded Coordination Ratio [E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in: 16th Annual Symposium on Theoretical Aspects of Computer Science, STACS, vol. 1563, 1999, pp. 404-413; T. Roughgarden, E. Tardos, How bad is selfish routing? in: 41st IEEE Annual Symposium of Foundations of Computer Science, FOCS, 2000, pp. 93-102]. A Leader can decrease the coordination ratio by assigning flow {\'a}r on M, and then all Followers assign selfishly the (1-{\'a})r remaining flow. This is a Stackelberg Scheduling Instance(M,r,{\'a}),0≤{\'a}≤1. It was shown [T. Roughgarden, Stackelberg scheduling strategies, in: 33rd Annual Symposium on Theory of Computing, STOC, 2001, pp. 104-113] that it is weakly NP-hard to compute the optimal Leader's strategy. For any such network M we efficiently compute the minimum portion @b"M of flow r>0 needed by a Leader to induce M's optimum cost, as well as her optimal strategy. This shows that the optimal Leader's strategy on instances (M,r,@a>=@b"M) is in P. Unfortunately, Stackelberg routing in more general nets can be arbitrarily hard. Roughgarden presented a modification of Braess's Paradox graph, such that no strategy controlling {\'a}r flow can induce ≤1/{\'a} times the optimum cost. However, we show that our main result also applies to any s-t net G. We take care of the Braess's graph explicitly, as a convincing example. Finally, we extend this result to k commodities. A conference version of this paper has appeared in [A. Kaporis, P. Spirakis, The price of optimum in stackelberg games on arbitrary single commodity networks and latency functions, in: 18th annual ACM symposium on Parallelism in Algorithms and Architectures, SPAA, 2006, pp. 19-28]. Some preliminary results have also appeared as technical report in [A.C. Kaporis, E. Politopoulou, P.G. Spirakis, The price of optimum in stackelberg games, in: Electronic Colloquium on Computational Complexity, ECCC, (056), 2005].