Abstract: Evaluating target tracking protocols for wireless sensor networks that can localize multiple mobile devices, can be a very challenging task. Such protocols usually aim at minimizing communication overhead, data processing for the participating nodes, as well as delivering adequate tracking information of the mobile targets in a timely manner. Simulations on such protocols are performed using theoretical models that are based on unrealistic assumptions like the unit disk graph communication model, ideal network localization and perfect distance estimations. With these assumptions taken for granted, theoretical models claim various performance milestones that cannot be achieved in realistic conditions. In this paper we design a new localization protocol, where mobile assets can be tracked passively via software agents. We address the issues that hinder its performance due to the real environment conditions and provide a deployable protocol. The implementation, integration and experimentation of this new protocol and it's optimizations, were performed using the WISEBED framework. We apply our protocol in multiple indoors wireless sensor testbeds with multiple experimental scenarios to showcase scalability and trade-offs between network properties and configurable protocol parameters. By analysis of the real world experimental output, we present results that depict a more realistic view of the target tracking problem, regarding power consumption and the quality of tracking information. Finally we also conduct some very focused simulations to assess the scalability of our protocol in very large networks and multiple mobile assets.
Abstract: We study the problem of localizing and tracking multiple moving targets in wireless sensor
networks, from a network design perspective i.e. towards estimating the least possible number
of sensors to be deployed, their positions and operation chatacteristics needed to perform the
tracking task. To avoid an expensive massive deployment, we try to take advantage of
possible coverage ovelaps over space and time, by introducing a novel combinatorial model
that captures such overlaps.
Under this model, we abstract the tracking network design problem by a combinatorial
problem of covering a universe of elements by at least three sets (to ensure that each point in
the network area is covered at any time by at least three sensors, and thus being localized). We
then design and analyze an efficient approximate method for sensor placement and operation,
that with high probability and in polynomial expected time achieves a (log n) approximation
ratio to the optimal solution. Our network design solution can be combined with alternative
collaborative processing methods, to suitably fit different tracking scenaria.
Abstract: We study the problem of localizing and tracking multiple moving targets in wireless sensor networks, from a network design perspective i.e. towards estimating the least possible number of sensors to be deployed, their positions and operation characteristics needed to perform the tracking task. To avoid an expensive massive deployment, we try to take advantage of possible coverage overlaps over space and time, by introducing a novel combinatorial model that captures such overlaps.
Under this model, we abstract the tracking network design problem by a combinatorial problem of covering a universe of elements by at least three sets (to ensure that each point in the network area is covered at any time by at least three sensors, and thus being localized). We then design and analyze an efficient approximate method for sensor placement and operation, that with high probability and in polynomial expected time achieves a {\`E}(logn) approximation ratio to the optimal solution. Our network design solution can be combined with alternative collaborative processing methods, to suitably fit different tracking scenarios.
Abstract: We study the important problem of tracking moving
targets in wireless sensor networks. We try to overcome the
limitations of standard state of the art tracking methods based on
continuous location tracking, i.e. the high energy dissipation and
communication overhead imposed by the active participation of
sensors in the tracking process and the low scalability, especially
in sparse networks. Instead, our approach uses sensors in a
passive way: they only record and judiciously spread information
about observed target presence in their vicinity; this information
is then used by the (powerful) tracking agent to locate the target
by just following the traces left at sensors. Our protocol is greedy,
local, distributed, energy efficient and very successful, in the
sense that (as shown by extensive simulations) the tracking agent
manages to quickly locate and follow the target; also, we achieve
good trade-offs between the energy dissipation and latency.
Abstract: We consider the performance of a number of DPLL algorithms on random 3-CNF formulas with n variables and m = rn clauses. A long series of papers analyzing so-called “myopic” DPLL algorithms has provided a sequence of lower bounds for their satisfiability threshold. Indeed, for each myopic algorithm A it is known that there exists an algorithm-specific clause-density, rA , such that if rtracking extension of either of these algorithms takes exponential time. Specifically, all extensions of orderred-dll take exponential time for r > 2.78 and the same is true for generalized unit clause for all r > 3.1. Our results imply exponential lower bounds for many other myopic algorithms for densities similarly close to the corresponding rA .
Abstract: In this paper, we describe the implementation of
applying and testing the ”Lightweight Target Tracking using
Passive Traces algorithm” [1] on a FIRE wireless sensors testbed
located in the Theoretical Computer Science/Sensors Lab in
Geneva, Switzerland. We provide information about the hardware
installation and configuration, the changes we did to the
algorithm to adapt it to a real testbed as well as the tools we
implemented to operate the network and receive feedback from
the algorithm’s operation. Finally, we discuss the performance
evaluation findings of our implementation.
Abstract: In this work we focus on the energy efficiency challenge in wireless sensor networks, from both an on-line perspective (related to routing), as well as a network design perspective (related to tracking). We investigate a few representative, important aspects of energy efficiency: a) the robust and fast data propagation b) the problem of balancing the energy
dissipation among all sensors in the network and c) the problem of efficiently tracking moving
entities in sensor networks. Our work here is a methodological survey of selected results that
have alre dy appeared in the related literature.
In particular, we investigate important issues of energy optimization, like minimizing the total
energy dissipation, minimizing the number of transmissions as well as balancing the energy
load to prolong the system¢s lifetime. We review characteristic protocols and techniques in the recent literature, including probabilistic forwarding and local optimization methods. We study the problem of localizing and tracking multiple moving targets from a network design perspective i.e. towards estimating the least possible number of sensors, their positions and operation characteristics needed to efficiently perform the tracking task. To avoid an expensive massive deployment, we try to take advantage of possible coverage overlaps over space and time, by introducing a novel combinatorial model that captures such overlaps. Under this model, we abstract the tracking network design problem by a covering combinatorial problem and then design and analyze an efficient approximate method for sensor placement
and operation.
Abstract: In this paper we present an efficient general simulation strategy for
computations designed for fully operational BSP machines of n ideal processors,
on n-processor dynamic-fault-prone BSP machines. The fault occurrences are failstop
and fully dynamic, i.e., they are allowed to happen on-line at any point of the
computation, subject to the constraint that the total number of faulty processors
may never exceed a known fraction. The computational paradigm can be exploited
for robust computations over virtual parallel settings with a volatile underlying
infrastructure, such as a NETWORK OF WORKSTATIONS (where workstations may be
taken out of the virtual parallel machine by their owner).
Our simulation strategy is Las Vegas (i.e., it may never fail, due to backtracking
operations to robustly stored instances of the computation, in case of locally
unrecoverable situations). It adopts an adaptive balancing scheme of the workload
among the currently live processors of the BSP machine.
Our strategy is efficient in the sense that, compared with an optimal off-line
adversarial computation under the same sequence of fault occurrences, it achieves an O
¡
.log n ¢ log log n/2¢
multiplicative factor times the optimal work (namely, this
measure is in the sense of the “competitive ratio” of on-line analysis). In addition,
our scheme is modular, integrated, and considers many implementation points.
We comment that, to our knowledge, no previous work on robust parallel computations
has considered fully dynamic faults in the BSP model, or in general distributed
memory systems. Furthermore, this is the first time an efficient Las Vegas
simulation in this area is achieved.