Abstract: We introduce a new model of
ad-hoc mobile networks, which we call hierarchical,
that are comprised of dense subnetworks of mobile
users (corresponding to highly populated
geographical areas, such as cities),
interconnected across access ports
by sparse but frequently used connections
(such as highways).
For such networks, we present
an efficient routing protocol which extends
the idea (introduced in WAE00) of exploiting the co-ordinated
motion of a small part of an ad-hoc mobile
network (the ``support'') to achieve
very fast communication between any two mobile users of the network.
The basic idea of the new protocol presented here is, instead
of using a unique (large) support for the whole network,
to employ a hierarchy of (small) supports (one for each city)
and also take advantage of the regular traffic
of mobile users across the interconnection highways to communicate
between cities.
We combine here theoretical analysis (average case estimations based on random walk properties) and experimental implementations (carried out using the LEDA platform) to claim and validate results showing that such a hierarchical routing approach is,
for this class of ad-hoc mobile networks, significantly more efficient than a simple extension of the
basic ``support'' idea presented in WAE00.
Abstract: We introduce a new model of ad-hoc mobile networks,
which we call hierarchical, that are comprised of
dense subnetworks of mobile users (corresponding to highly
populated geographical areas), interconnected across access
ports by sparse but frequently used connections.
To implement communication in such a case, a possible
solution would be to install a very fast (yet limited) backbone
interconnecting such highly populated mobile user areas, while
employing a hierarchy of (small) supports (one for each lower level
site). This fast backbone provides a limited number of access
ports within these dense areas of mobile users.
We combine here theoretical analysis (average case estimations based on
random walk properties) to claim and validate
results showing that such a hierarchical routing approach is,
for this class of ad-hoc mobile networks, significantly
more efficient than a simple extension of the
basic ``support'' idea presented in [WAE00,DISC01].