Abstract: We consider the Railway Traveling Salesman Problem. We
show that this problem can be reduced to a variant of the generalized
traveling salesman problem, defined on an undirected graph G = (V,E)
with the nodes partitioned into clusters, which consists in finding a mini-
mum cost cycle spanning a subset of nodes with the property that exactly
two nodes are chosen from each cluster. We describe an exact exponen-
tial time algorithm for the problem, as well we present two mixed integer
programming models of the problem. Based on one of this models pro-
posed, we present an efficient solution procedure based on a cutting plane
algorithm. Extensive computational results for instances taken from the
railroad company of the Netherlands Nederlandse Spoorwegen and involv-
ing graphs with up to 2182 nodes and 38650 edges are reported.

Abstract: We propose a simple and intuitive cost mechanism which assigns costs for the competitive
usage of m resources by n selfish agents. Each agent has an individual demand; demands are
drawn according to some probability distribution. The cost paid by an agent for a resource
it chooses is the total demand put on the resource divided by the number of agents who
chose that same resource. So, resources charge costs in an equitable, fair way, while each
resource makes no profit out of the agents.
We call our model the Fair Pricing model. Its fair cost mechanism induces a noncooperative
game among the agents. To evaluate the Nash equilibria of this game, we
introduce the Diffuse Price of Anarchy, as an extension of the Price of Anarchy that takes
into account the probability distribution on the demands. We prove:
² Pure Nash equilibria may not exist, unless all chosen demands are identical.
² A fully mixed Nash equilibrium exists for all possible choices of the demands. Further
on, the fully mixed Nash equilibrium is the unique Nash equilibrium in case there are
only two agents.
² In the worst-case choice of demands, the Price of Anarchy is £(n); for the special case
of two agents, the Price of Anarchy is less than 2 ¡ 1
m .
² Assume now that demands are drawn from a bounded, independent probability distribution,
where all demands are identically distributed, and each demand may not exceed
some (universal for the class) constant times its expectation. It happens that the constant
is just 2 when each demand is distributed symmetrically around its expectation.
We prove that, for asymptotically large games where the number of agents tends to
infinity, the Diffuse Price of Anarchy is at most that universal constant. This implies
the first separation between Price of Anarchy and Diffuse Price of Anarchy.
Towards the end, we consider two closely related cost sharing models, namely the Average
Cost Pricing and the Serial Cost Sharing models, inspired by Economic Theory. In contrast
to the Fair Pricing model, we prove that pure Nash equilibria do exist for both these models.

Abstract: Wireless sensor networks are comprised of a vast number of devices, situated in an area of interest that self organize in a structureless network, in order to monitor/record/measure an environmental variable or phenomenon and subsequently to disseminate the data to the control center.
Here we present research focused on the development, simulation and evaluation of energy efficient algorithms, our basic goal is to minimize the energy consumption. Despite technology advances, the problem of energy use optimization remains valid since current and emerging hardware solutions fail to solve it.
We aim to reduce communication cost, by introducing novel techniques that facilitate the development of new algorithms. We investigated techniques of distributed adaptation of the operations of a protocol by using information available locally on every node, thus through local choices we improve overall performance. We propose techniques for collecting and exploiting limited local knowledge of the network conditions. In an energy efficient manner, we collect additional information which is used to achieve improvements such as forming energy efficient, low latency and fault tolerant paths to route data. We investigate techniques for managing mobility in networks where movement is a characteristic of the control center as well as the sensors. We examine methods for traversing and covering the network field based on probabilistic movement that uses local criteria to favor certain areas.
The algorithms we develop based on these techniques operate a) at low level managing devices, b) on the routing layer and c) network wide, achieving macroscopic behavior through local interactions. The algorithms are applied in network cases that differ in density, node distribution, available energy and also in fundamentally different models, such as under faults, with incremental node deployment and mobile nodes. In all these settings our techniques achieve significant gains, thus distinguishing their value as tools of algorithmic design.

Abstract: We consider the online impairment-aware routing
and wavelength assignment (IA-RWA) problem in transparent
WDM networks. To serve a new connection, the online algorithm,
in addition to finding a route and a free wavelength (a lightpath),
has to guarantee its transmission quality, which is affected by
physical-layer impairments. Due to interference effects, the establishment
of the new lightpath affects and is affected by the other
lightpaths. We present two multicost algorithms that account
for the actual current interference among lightpaths, as well as
for other physical effects, performing a cross-layer optimization
between the network and physical layers. In multicost routing,
a vector of cost parameters is assigned to each link, from which
the cost vectors of the paths are calculated. The first algorithm
utilizes cost vectors consisting of impairment-generating source
parameters, so as to be generic and applicable to different physical
settings. These parameters are combined into a scalar cost
that indirectly evaluates the quality of candidate lightpaths. The
second algorithm uses specific physical-layer models to define
noise variance-related cost parameters, so as to directly calculate
the -factor of candidate lightpaths. The algorithms find a set of
so-called nondominated paths to serve the connection in the sense
that no path is better in the set with respect to all cost parameters.
To select the lightpath, we propose various optimization functions
that correspond to different IA-RWA algorithms. The proposed
algorithms combine the strength of multicost optimization with
low execution times, making them appropriate for serving online
connections

Abstract: This paper presents results from the IST Phosphorus project that studies and implements an optical Grid test-bed. A significant part of this project addresses scheduling and routing algorithms and dimensioning problems of optical grids. Given the high costs involved in setting up actual hardware implementations, simulations are a viable alternative. In this paper we present an initial study which proposes models that reflect real-world grid application traffic characteristics, appropriate for simulation purposes. We detail several such models and the corresponding process to extract the model parameters from real grid log traces, and verify that synthetically generated jobs provide a realistic approximation of the real-world grid job submission process.

Abstract: Recent rapid developments in micro-electro-mechanical systems
(MEMS), wireless communications and digital electronics have already
led to the development of tiny, low-power, low-cost sensor devices.
Such devices integrate sensing, limited data processing and restricted
communication capabilities.
Each sensor device individually might have small utility, however the
effective distributed co-ordination of large numbers of such devices can
lead to the efficient accomplishment of large sensing tasks. Large numbers
of sensors can be deployed in areas of interest (such as inaccessible
terrains or disaster places) and use self-organization and collaborative
methods to form an ad-hoc network.
We note however that the efficient and robust realization of such large,
highly-dynamic, complex, non-conventional networking environments is
a challenging technological and algorithmic task, because of the unique
characteristics and severe limitations of these devices.
This talk will present and discuss several important aspects of the
design, deployment and operation of sensor networks. In particular, we
provide a brief description of the technical specifications of state-of-theart
sensor, a discussion of possible models used to abstract such networks,
a discussion of some key algorithmic design techniques (like randomization,
adaptation and hybrid schemes), a presentation of representative
protocols for sensor networks, for important problems including data
propagation, collision avoidance and energy balance and an evaluation
of crucial performance properties (correctness, efficiency, fault-tolerance)
of these protocols, both with analytic and simulation means.

Abstract: We propose a class of novel energy-efficient multi-cost routing algorithms for wireless mesh networks, and evaluate their performance. In multi-cost routing, a vector of cost parameters is assigned to each network link, from which the cost vectors of candidate paths are calculated using appropriate operators. In the end these parameters are combined in various optimization functions, corresponding to different routing algorithms, for selecting the optimal path. We evaluate the performance of the proposed energy-aware multi-cost routing algorithms under two models. In the network evacuation model, the network starts with a number of packets that have to be transmitted and an amount of energy per node, and the objective is to serve the packets in the smallest number of steps, or serve as many packets as possible before the energy is depleted. In the dynamic one-to-one communication model, new data packets are generated continuously and nodes are capable of recharging their energy periodically, over an infinite time horizon, and we are interested in the maximum achievable steady-state throughput, the packet delay, and the energy consumption. Our results show that energy-aware multi-cost routing increases the lifetime of the network and achieves better overall network performance than other approaches.

Abstract: Data propagation in wireless sensor
networks is usually performed as a multihop process.
Thus,
To deliver a single
message, the resources of many sensor nodes are used and
a lot of energy is spent.
Recently, a novel approach is catching momentum because of important applications;
that of having a mobile sink move inside the network area and collect
the data with low energy cost.
Here we extend this line of research by proposing and evaluating three new protocols.
Our protocols are novel in
a) investigating the impact of having {many} mobile sinks
b) in weak models with restricted mobility, proposing and evaluating
a mix of static and mobile sinks and c) proposing a distributed
protocol that tends to {equally spread the sinks} in the network to
further improve performance.
Our protocols are simple, based on randomization and assume locally
obtainable information. We perform an extensive evaluation via simulation; our
findings demonstrate that our solutions scale very well with respect to the number of sinks
and significantly reduce energy consumption and delivery delay.

Abstract: In this work, we study the combinatorial structure and the
computational complexity of Nash equilibria for a certain game that
models selfish routing over a network consisting of m parallel links. We
assume a collection of n users, each employing a mixed strategy, which
is a probability distribution over links, to control the routing of its own
assigned traffic. In a Nash equilibrium, each user selfishly routes its traffic
on those links that minimize its expected latency cost, given the network
congestion caused by the other users. The social cost of a Nash equilibrium
is the expectation, over all random choices of the users, of the
maximum, over all links, latency through a link.
We embark on a systematic study of several algorithmic problems related
to the computation of Nash equilibria for the selfish routing game we consider.
In a nutshell, these problems relate to deciding the existence of a
Nash equilibrium, constructing a Nash equilibrium with given support
characteristics, constructing the worst Nash equilibrium (the one with
maximum social cost), constructing the best Nash equilibrium (the one
with minimum social cost), or computing the social cost of a (given) Nash
equilibrium. Our work provides a comprehensive collection of efficient algorithms,
hardness results (both as NP-hardness and #P-completeness
results), and structural results for these algorithmic problems. Our results
span and contrast a wide range of assumptions on the syntax of the
Nash equilibria and on the parameters of the system.

Abstract: The timetable information problem can be solved by computing shortest paths in special graphs built from timetable data. In general, two models exist: the time-dependent and time-expanded network. In a recent work, both models are compared with respect to advantages and disadvantages on a theoretical and a practical framework. In addition, an extensive experimental evaluation reveals further differences with respect to query performance. However, delays which occur very frequently in railway systems are not covered. In this work, we show how the time-dependent and the time-expanded models should be updated in order to capture delays. It turns out that delays can be incorporated in the time-dependent model without changing the topology of the network. This is not true for the time-expanded model, whose updating involves a (sometimes large) sequence of edge insertions, deletions, and cost modifications.

Abstract: A Nash equilibrium of a routing network represents a stable state of the network where no user finds it beneficial to unilaterally deviate from its routing strategy. In this work, we investigate the structure of such equilibria within the context of a certain game that models selfish routing for a set of n users each shipping its traffic over a network consisting of m parallel links. In particular, we are interested in identifying the worst-case Nash equilibrium – the one that maximizes social cost. Worst-case Nash equilibria were first introduced and studied in the pioneering work of Koutsoupias and Papadimitriou [9].
More specifically, we continue the study of the Conjecture of the Fully Mixed Nash Equilibrium, henceforth abbreviated as FMNE Conjecture, which asserts that the fully mixed Nash equilibrium, when existing, is the worst-case Nash equilibrium. (In the fully mixed Nash equilibrium, the mixed strategy of each user assigns (strictly) positive probability to every link.) We report substantial progress towards identifying the validity, methodologies to establish, and limitations of, the FMNE Conjecture.